CSC 411: Lecture 10/11: Neural Networks

Raquel Urtasun & Rich Zemel

University of Toronto

Oct 16, 2015
Today

- Forward propagation
- Backward propagation
- Deep learning
Motivation Examples
Are you excited about deep learning?
Limitations of linear classifiers

- Linear classifiers (e.g., logistic regression) classify inputs based on linear combinations of features x_i.
- Many decisions involve non-linear functions of the input.
- Canonical example: do 2 input elements have the same value?

The positive and negative cases cannot be separated by a plane.

What can we do?
How to construct nonlinear classifiers?

- Would like to construct non-linear discriminative classifiers that utilize functions of input variables
- Add large number of extra functions
 - If these functions are fixed (Gaussian, sigmoid, polynomial basis functions), then optimization still involves linear combinations of (fixed functions of) the inputs
 - Or we can make these functions depend on additional parameters → need an efficient method of training extra parameters
Neural Networks

- Many machine learning methods inspired by biology, brains
- Our brains contain \(\sim 10^{11} \) neurons, each of which communicates to \(\sim 10^4 \) other neurons
- **Multi-layer perceptron**, or **neural network**, is a popular supervised approach
- Defines extra functions of the inputs (hidden features), computed by neurons
- Artificial neurons called **units**
- Network output is a linear combination of hidden units
Neural network architecture

- Network with one layer of four hidden units:

 ![Diagram of a neural network with one layer of four hidden units](image)

 - Each unit computes its value based on linear combination of values of units that point into it.
 - Can add more layers of hidden units: deeper hidden unit response depends on earlier hiddens.
We only need to know two algorithms

- **Forward pass**: performs inference
- **Backward pass**: performs learning
What does the network compute?

- Output of network can be written as (with k indexing the two output units):
 \[
 h_j(x) = f(w_{j0} + \sum_{i=1}^{D} x_i v_{ji})
 \]
 \[
 o_k(x) = g(w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj})
 \]

- Network with non-linear activation function $f()$ is a universal approximator (esp. with increasing J)

- Standard f: sigmoid/logistic, or tanh, or rectified linear (relu)

 \[
 \text{tanh}(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} \quad \text{relu}(z) = \max(0, z)
 \]
Consider trying to classify image of handwritten digit: 32x32 pixels

Single output units – it is a 4 (one vs. all)?

Use the sigmoid output function:

\[o_k(x) = \frac{1}{1 + \exp(-z_k)} \]

\[z_k = w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj} \]

What do I recover if \(h_j(x) = x_j \)?

How can we train the network, that is, adjust all the parameters \(\mathbf{w} \)?

If we have trained the network, how can we do inference?
Training multi-layer networks: back-propagation

- Use gradient descent to learn the weights
- **Back-propagation**: an efficient method for computing gradients needed to perform gradient-based optimization of the weights in a multi-layer network
- Loop until convergence:
 - for each example n
 1. Given input $x^{(n)}$, propagate activity forward ($x^{(n)} \rightarrow h^{(n)} \rightarrow o^{(n)}$)
 2. Propagate gradients backward
 3. Update each weight (via gradient descent)
- Given any error function E, activation functions $g()$ and $f()$, just need to derive gradients
Key idea behind backpropagation

- We don’t have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
 - Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities
 - Each hidden activity can affect many output units and can therefore have many separate effects on the error. These effects must be combined
 - We can compute error derivatives for all the hidden units efficiently
 - Once we have the error derivatives for the hidden activities, it's easy to get the error derivatives for the weights going into a hidden unit

- This is just the chain rule!
Computing gradient: single layer network

Error gradients for single layer network:

\[\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} \]

• Error gradient is computable for any continuous activation function \(g() \), and any continuous error function.
Gradient descent for single layer network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_k^{(n)}} = o_k^{(n)} - t_k^{(n)}
$$

Using logistic activations

$$
o_k^{(n)} = g(z_k^{(n)}) = (1 + \exp(z_k^{(n)}))^{-1}
$$

$$
\frac{\partial o_k^{(n)}}{\partial z_k^{(n)}} = o_k^{(n)}(1 - o_k^{(n)})
$$

- The error gradient is then:

$$
\frac{\partial E}{\partial w_{ki}} = \sum_{n=1}^{N} \frac{\partial E}{\partial o_k^{(n)}} \frac{\partial o_k^{(n)}}{\partial z_k^{(n)}} \frac{\partial z_k^{(n)}}{\partial w_{ki}} = \sum_{n=1}^{N} (o_k^{(n)} - t_k^{(n)}) o_k^{(n)}(1 - o_k^{(n)}) x_i^{(n)}
$$

- The gradient descent update rule is given by:

$$
w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}} = w_{ki} - \eta \sum_{n=1}^{N} (o_k^{(n)} - t_k^{(n)}) o_k^{(n)}(1 - o_k^{(n)}) x_i^{(n)}
$$
Multi-layer neural network

Output Layer

Output of unit k
Output layer activation function

Net input to output unit k

Hidden Layer

Output of hidden unit j
Hidden layer activation function

Net input to unit j

Input Layer

Weight from hidden j to output k

Weight from input i to output j
Input unit i
Back-propagation: sketch on one training case

- Convert discrepancy between each output and its target value into an error derivative

\[E = \frac{1}{2} \sum_k (o_k - t_k)^2; \quad \frac{\partial E}{\partial o_k} = o_k - t_k \]

- Compute error derivatives in each hidden layer from error derivatives in layer above. [assign blame for error at \(k \) to each unit \(j \) according to its influence on \(k \) (depends on \(w_{kj} \))]

- Use error derivatives w.r.t. activities to get error derivatives w.r.t. the weights.
Gradient descent for multi-layer network

The output weight gradients for a multi-layer network are the same as for a single layer network

$$\frac{\partial E}{\partial w_{kj}} = \sum_{n=1}^{N} \frac{\partial E}{\partial o_k^{(n)}} \frac{\partial o_k^{(n)}}{\partial z_k^{(n)}} \frac{\partial z_k^{(n)}}{\partial w_{kj}} = \sum_{n=1}^{N} \delta_k^{(n)} h_j^{(n)}$$

where δ_k is the error w.r.t. the net input for unit k

Hidden weight gradients are then computed via back-prop:

$$\frac{\partial E}{\partial h_j^{(n)}} = \sum_k \frac{\partial E}{\partial o_k^{(n)}} \frac{\partial o_k^{(n)}}{\partial z_k^{(n)}} \frac{\partial z_k^{(n)}}{\partial h_j^{(n)}} = \sum_k \delta_k^{(n)} w_{kj}$$

$$\frac{\partial E}{\partial v_{ji}} = \sum_{n=1}^{N} \frac{\partial E}{\partial h_j^{(n)}} \frac{\partial h_j^{(n)}}{\partial u_j^{(n)}} \frac{\partial u_j^{(n)}}{\partial v_{ji}} = \sum_{n=1}^{N} \left(\sum_k \delta_k^{(n)} w_{kj} \right) f'(u_j^{(n)}) x_i^{(n)} = \sum_{n=1}^{N} \bar{\delta}_j^{(n)} x_i^{n}$$
Choosing activation and cost functions

- When using a neural network as a function approximator (regressor) sigmoid activation and MSE as loss function work well.

- For classification, if it is a binary (2-class) problem, then cross-entropy error function often does better (as we saw with logistic regression).

\[
E = - \sum_{n=1}^{N} t^{(n)} \log o^{(n)} + (1 - t^{(n)}) \log(1 - o^{(n)})
\]

\[
o^{(n)} = (1 + \exp(-z^{(n)}))^{-1}
\]

- We can then compute via the chain rule:

\[
\frac{\partial E}{\partial o} = o - t
\]

\[
\frac{\partial o}{\partial z} = o(1 - o)
\]

\[
\frac{\partial E}{\partial z} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial z} = (o - t)o(1 - o)
\]
For multi-class classification problems, use the softmax activation

$$E = - \sum_n \sum_k t_k^{(n)} \log o_k^{(n)}$$

$$o_k^{(n)} = \frac{\exp(z_k^{(n)})}{\sum_j \exp(z_j^{(n)})}$$

And the derivatives become

$$\frac{\partial o_k}{\partial z_k} = o_k(1 - o_k)$$

$$\frac{\partial E}{\partial z_k} = \sum_j \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial z_k} = (o_k - t_k) o_k (1 - o_k)$$
Now trying to classify image of handwritten digit: 32x32 pixels

10 output units, 1 per digit

Use the softmax function:

\[
o_k = \frac{\exp(z_k)}{\sum_j \exp(z_j)}
\]

\[
z_k = (w_{k0} + \sum_{j=1}^{J} h_j(x)w_{kj})
\]

What is \(J \)?
Ways to use weight derivatives

- How often to update
 - after a full sweep through the training data
 \[w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}} = w_{ki} - \eta \sum_{n=1}^{N} (o_k^{(n)} - t_k^{(n)}) o_k^{(n)} (1 - o_k^{(n)}) x_i^{(n)} \]
 - after each training case
 - after a mini-batch of training cases

- How much to update
 - Use a fixed learning rate
 - Adapt the learning rate
 - Add momentum

\[w_{ki} \leftarrow w_{ki} - \nu \]
\[\nu \leftarrow \gamma \nu + \eta \frac{\partial E}{\partial w_{ki}} \]
Deep Neural Networks

- We only need to know two algorithms
 - **Forward pass:** performs inference
 - **Backward pass:** performs learning

- Neural nets are now called *deep learning*. Why?
Why "Deep"?

Supervised Learning: Examples

Classification

"dog"
Why "Deep"?

Supervised Learning: Examples

Classification

![Classification Example](image)

"dog"

classification

Supervised Deep Learning

Classification

![Classification Example](image)

"dog"

classification

[Picture from M. Ranzato]
Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions.
Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions.

Note: a composite of linear functions is linear!
Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions.

Note: a composite of linear functions is linear!

Example: 2 layer NNet (now matrix and vector form!)

\[
\begin{align*}
\text{x} & \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \\
\text{h}^1 & \rightarrow \text{h}^2 \rightarrow \text{y}
\end{align*}
\]

- x is the input
- y is the output (what we want to predict)
- \(h^i \) is the \(i \)-th hidden layer
- \(W^i \) are the parameters of the \(i \)-th layer
Neural Networks

- Deep learning uses **composite of simple functions** (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 layer NNet (now matrix and vector form!)

\[
x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y
\]

- **x** is the input
Deep learning uses **composite of simple functions** (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions.

Note: A composite of linear functions is linear!

Example: 2 layer NNet (now matrix and vector form!)

\[
\begin{align*}
\text{x} & \rightarrow \max(0, W_1^T \text{x} + b^1) \\
\text{h}^1 & \rightarrow \max(0, W_2^T \text{h}^1 + b^2) \\
\text{h}^2 & \rightarrow W_3^T \text{h}^2 + b^3 \\
\text{y} &
\end{align*}
\]

- \text{x} is the input
- \text{y} is the output (what we want to predict)
Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions.

Note: a composite of linear functions is linear!

Example: 2 layer NNet (now matrix and vector form!)

\[
\begin{align*}
\mathbf{x} & \rightarrow \max(0, \mathbf{W}_1^T \mathbf{x} + \mathbf{b}_1) \\
& \rightarrow \max(0, \mathbf{W}_2^T \mathbf{h}_1 + \mathbf{b}_2) \\
& \rightarrow \mathbf{W}_3^T \mathbf{h}_2 + \mathbf{b}_3 \\
\end{align*}
\]

\(\mathbf{x} \) is the input
\(\mathbf{y} \) is the output (what we want to predict)
\(\mathbf{h}_i \) is the \(i \)-th hidden layer
Deep learning uses **composite of simple functions** (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions.

Note: a composite of linear functions is linear!

Example: 2 layer NNet (now matrix and vector form!)

\[
\begin{align*}
 x &\rightarrow \max(0, W_1^T x + b_1) \\
 h_1 &\rightarrow \max(0, W_2^T h_1 + b_2) \\
 h_2 &\rightarrow W_3^T h_2 + b_3 \\
 y &\rightarrow \\
\end{align*}
\]

- \(x\) is the input
- \(y\) is the output (what we want to predict)
- \(h^i\) is the \(i\)-th hidden layer
- \(W^i\) are the parameters of the \(i\)-th layer
Evaluating the Function

- Assume we have learn the weights and we want to do inference
- **Forward Propagation**: compute the output given the input

\[
x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y
\]
Evaluating the Function

- Assume we have learned the weights and we want to do inference.

- **Forward Propagation**: compute the output given the input.

 \[
 h_1 = \max(0, W_1^T x + b_1) \\
 h_2 = \max(0, W_2^T h_1 + b_2) \\
 y = W_3^T h_2 + b_3
 \]

- **Fully connected layer**: Each hidden unit takes as input all the units from the previous layer.
Evaluating the Function

- Assume we have learned the weights and we want to do inference.

- **Forward Propagation**: compute the output given the input.

 \[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y \]

- **Fully connected layer**: Each hidden unit takes as input all the units from the previous layer.

- The non-linearity is called a ReLU (rectified linear unit), with \(x \in \mathbb{R}^D \), \(b^i \in \mathbb{R}^{N_i} \) the biases and \(W^i \in \mathbb{R}^{N_i \times N_{i-1}} \) the weights.
Evaluating the Function

- Assume we have learned the weights and we want to do inference.

- **Forward Propagation**: compute the output given the input.

 \[
 h^1 = \max(0, W^1 x + b^1) \rightarrow \max(0, W^2 h^1 + b^2) \rightarrow W^3 h^2 + b^3
 \]

- **Fully connected layer**: Each hidden unit takes as input all the units from the previous layer.

- The non-linearity is called a ReLU (rectified linear unit), with \(x \in \mathbb{R}^D \), \(b^i \in \mathbb{R}^{N_i} \) the biases and \(W^i \in \mathbb{R}^{N_i \times N_{i-1}} \) the weights.

- Do it in a compositional way,
 \[
 h^1 = \max(0, W^1 x + b^1)
 \]
Evaluating the Function

- Assume we have learned the weights and we want to do inference.

- **Forward Propagation**: compute the output given the input.

- **Fully connected layer**: Each hidden unit takes as input all the units from the previous layer.

- The non-linearity is called a ReLU (rectified linear unit), with \(\mathbf{x} \in \mathbb{R}^D \), \(b^i \in \mathbb{R}^{N_i} \) the biases and \(W^i \in \mathbb{R}^{N_i \times N_{i-1}} \) the weights.

- Do it in a compositional way:

 \[
 h^1 = \max(0, W^1 \mathbf{x} + b^1) \\
 h^2 = \max(0, W^2 h^1 + b^2) \\
 y = W^3 h^2 + b^3
 \]
Evaluating the Function

- Assume we have learned the weights and we want to do inference

- **Forward Propagation**: compute the output given the input

\[
x \rightarrow \text{max}(0, W_1^T x + b^1) \rightarrow \text{max}(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y
\]

- **Fully connected layer**: Each hidden unit takes as input all the units from the previous layer

- The non-linearity is called a ReLU (rectified linear unit), with \(x \in \mathbb{R}^D \), \(b^i \in \mathbb{R}^{N_i} \) the biases and \(W^i \in \mathbb{R}^{N_i \times N_{i-1}} \) the weights

- Do it in a compositional way

\[
\begin{align*}
h^1 &= \text{max}(0, W_1 x + b^1) \\
h^2 &= \text{max}(0, W_2 h^1 + b^2) \\
y &= \text{max}(0, W_3 h^2 + b^3)
\end{align*}
\]
Alternative Graphical Representation

\[h^k \xrightarrow{\text{max}(0, W^{k+1} h^k)} h^{k+1} \]

\[h^k \xrightarrow{W^{k+1}} h^{k+1} \]
Learning

$$x \rightarrow \max(0, W_1^T x + b^1) \rightarrow h^1 \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow h^2 \rightarrow W_3^T h^2 + b^3 \rightarrow y$$

We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions.

Collect a training set of input-output pairs $\{(x, t)\}$

Encode the output with 1-K encoding: $t = [0, \cdots, 1, \cdots, 0]$

Define a loss per training example and minimize the empirical risk:

$$L(w) = \frac{1}{N} \sum_{i} \ell(w, x(i), t(i))$$

with N number of examples and w contains all parameters.
We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions.
We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions.

Collect a training set of input-output pairs \(\{x, t\} \)
We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions.

Collect a training set of input-output pairs \(\{x, t\} \)

Encode the output with 1-K encoding \(t = [0, \cdots, 1, \cdots, 0] \)
Learning

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions

- Collect a training set of input-output pairs \(\{x, t\} \)

- Encode the output with 1-K encoding \(t = [0, \cdots, 1, \cdots, 0] \)

- Define a loss per training example and minimize the empirical risk

\[
L(w) = \frac{1}{N} \sum_{i} \ell(w, x^{(i)}, t^{(i)})
\]

with \(N \) number of examples and \(w \) contains all parameters
Loss Functions

\[\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_i \ell(\mathbf{w}, \mathbf{x}^{(i)}, t^{(i)}) \]
Loss Functions

\[\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_i \ell(\mathbf{w}, \mathbf{x}^{(i)}, t^{(i)}) \]

- Probability of class k given input (softmax):

\[
p(c_k = 1|\mathbf{x}) = \frac{\exp(y_k)}{\sum_{j=1}^{c} \exp(y_j)}
\]
Loss Functions

\[\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_i \ell(\mathbf{w}, \mathbf{x}^{(i)}, t^{(i)}) \]

- Probability of class \(k \) given input (softmax):
 \[
 p(c_k = 1|\mathbf{x}) = \frac{\exp(y_k)}{\sum_{c=1}^{C} \exp(y_c)}
 \]

- Cross entropy is the most used loss function for classification
 \[
 \ell(\mathbf{x}, t, \mathbf{w}) = -\sum_i t^{(i)} \log p(c_i|\mathbf{x})
 \]
Loss Functions

\[\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i} \ell(\mathbf{w}, \mathbf{x}^{(i)}, t^{(i)}) \]

- Probability of class \(k \) given input (softmax):
 \[p(c_k = 1 | \mathbf{x}) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)} \]

- Cross entropy is the most used loss function for classification
 \[\ell(\mathbf{x}, t, \mathbf{w}) = - \sum_{i} t^{(i)} \log p(c_i | \mathbf{x}) \]

- Use gradient descent to train the network
 \[\min_{\mathbf{w}} \frac{1}{N} \sum_{i} \ell(\mathbf{w}, \mathbf{x}^{(i)}, t^{(i)}) \]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y
\]

\[
\frac{\partial \ell}{\partial y} = p(c|x) - t
\]

Note that the forward pass is necessary to compute \(\frac{\partial \ell}{\partial y} \).
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y \]

\[\frac{\partial \ell}{\partial y} = p(c_k = 1|x) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)} \]

\[\ell(x, t, w) = -\sum_{i} t(i) \log p(c_i|x) \]
Efficient computation of the gradients by applying the chain rule

\[
\begin{align*}
x & \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \\
\frac{\partial \ell}{\partial y} & = p(c_k = 1|\mathbf{x}) \\
p(c_k = 1|\mathbf{x}) & = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)} \\
\ell(\mathbf{x}, t, \mathbf{w}) & = -\sum_{i} t^{(i)} \log p(c_i|\mathbf{x})
\end{align*}
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
\begin{align*}
\text{x} & \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \\
\end{align*}
\]

\[
p(c_k = 1|x) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)}
\]

\[
\ell(x, t, w) = -\sum_{i} t^{(i)} \log p(c_i|x)
\]

- Compute the derivative of loss w.r.t. the output

\[
\frac{\partial \ell}{\partial y} = p(c|x) - t
\]
Efficient computation of the gradients by applying the chain rule

\[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y \]

\[p(c_k = 1|x) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)} \]

\[\ell(x, t, w) = - \sum_{i} t^{(i)} \log p(c_i|x) \]

Compute the derivative of loss w.r.t. the output

\[\frac{\partial \ell}{\partial y} = p(c|x) - t \]

Note that the forward pass is necessary to compute \(\frac{\partial \ell}{\partial y} \)
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
\begin{align*}
\mathbf{x} & \rightarrow \max(0, \mathbf{W}_1^T \mathbf{x} + \mathbf{b}_1) & \mathbf{h}_1 \\
\mathbf{h}_1 & \rightarrow \max(0, \mathbf{W}_2^T \mathbf{h}_1 + \mathbf{b}_2) & \mathbf{h}_2 \\
\mathbf{h}_2 & \rightarrow \mathbf{W}_3^T \mathbf{h}_2 + \mathbf{b}_3 & \mathbf{y}
\end{align*}
\]

- We have computed the derivative of loss w.r.t the output

\[
\frac{\partial \ell}{\partial \mathbf{y}} = p(c|\mathbf{x}) - t
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow h^2 \rightarrow W_3^T h^2 + b^3 \rightarrow y \]

- We have computed the derivative of loss w.r.t the output

\[\frac{\partial \ell}{\partial y} = p(c|x) - t \]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y \]

- We have computed the derivative of loss w.r.t the output

\[\frac{\partial \ell}{\partial y} = p(c|x) - t \]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module

\[\frac{\partial \ell}{\partial W^3} = \]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
\text{x} \rightarrow \max(0, W_1^T \text{x} + b^1) \rightarrow \max(0, W_2^T \text{h}^1 + b^2) \rightarrow W_3^T \text{h}^2 + b^3 \rightarrow \text{y}
\]

- We have computed the derivative of loss w.r.t the output

\[
\frac{\partial \ell}{\partial \text{y}} = p(c|\text{x}) - t
\]

- Given \(\frac{\partial \ell}{\partial \text{y}} \) if we can compute the Jacobian of each module

\[
\frac{\partial \ell}{\partial W^3} = \frac{\partial \ell}{\partial \text{y}} \frac{\partial \text{y}}{\partial W^3}
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y
\]

- We have computed the derivative of loss w.r.t the output

\[
\frac{\partial \ell}{\partial y} = p(c|x) - t
\]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module

\[
\frac{\partial \ell}{\partial W^3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W^3} = (p(c|x) - t)(h^2)^T
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule.

\[
\begin{align*}
x \rightarrow & \quad \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y
\end{align*}
\]

- We have computed the derivative of loss w.r.t the output

\[
\frac{\partial \ell}{\partial y} = p(c|x) - t
\]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module

\[
\frac{\partial \ell}{\partial W^3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W^3} = (p(c|x) - t)(h^2)^T
\]

\[
\frac{\partial \ell}{\partial h^2} =
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow W_3^T h^2 + b^3 \rightarrow y \]

- We have computed the derivative of loss w.r.t the output

\[\frac{\partial \ell}{\partial y} = p(c|x) - t \]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module

\[\frac{\partial \ell}{\partial W^3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W^3} = (p(c|x) - t)(h^2)^T \]

\[\frac{\partial \ell}{\partial h^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h^2} = \]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
x \xrightarrow{\text{max}(0, W_1^T x + b_1)} h^1 \xrightarrow{\max(0, W_2^T h^1 + b_2)} h^2 \xrightarrow{W_3^T h^2 + b_3} y
\]

- We have computed the derivative of loss w.r.t the output

\[
\frac{\partial \ell}{\partial y} = p(c|x) - t
\]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module

\[
\frac{\partial \ell}{\partial W^3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W^3} = (p(c|x) - t)(h^2)^T
\]

\[
\frac{\partial \ell}{\partial h^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t)
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \max(0, W_2^T h_1 + b^2) \rightarrow W_3^T h_2 + b^3 \rightarrow y \]

- We have computed the derivative of loss w.r.t the output

\[\frac{\partial \ell}{\partial y} = p(c|x) - t \]

- Given \(\frac{\partial \ell}{\partial y} \) if we can compute the Jacobian of each module

\[\frac{\partial \ell}{\partial W^3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W^3} = (p(c|x) - t)(h^2)^T \]

\[\frac{\partial \ell}{\partial h^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t) \]

- Need to compute gradient w.r.t. inputs and parameters in each layer
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
\begin{align*}
\text{x} & \rightarrow \max(0, W_1^T x + b^1) \\
& \rightarrow \max(0, W_2^T h^1 + b^2) \\
\rightarrow W_3^T h^2 + b^3 \\
\rightarrow y
\end{align*}
\]

\[
\frac{\partial \ell}{\partial h^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t)
\]

- Given \(\frac{\partial \ell}{\partial h^2} \) if we can compute the Jacobian of each module
Efficient computation of the gradients by applying the chain rule

\[
\begin{align*}
\frac{\partial l}{\partial h^2} &= \frac{\partial l}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t) \\
\end{align*}
\]

Given \(\frac{\partial l}{\partial h^2} \) if we can compute the Jacobian of each module
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
x \rightarrow \max(0, W_1^T x + b^1) \rightarrow \frac{\partial \ell}{\partial h^1} \rightarrow \max(0, W_2^T h^1 + b^2) \rightarrow \frac{\partial \ell}{\partial h^2} \rightarrow W_3^T h^2 + b^3 \rightarrow \frac{\partial \ell}{\partial y}
\]

\[
\frac{\partial \ell}{\partial h^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t)
\]

- Given \(\frac{\partial \ell}{\partial h^2} \) if we can compute the Jacobian of each module

\[
\frac{\partial \ell}{\partial W^2} = \frac{\partial \ell}{\partial h^2} \frac{\partial h^2}{\partial W^2}
\]
Efficient computation of the gradients by applying the chain rule

\[
\frac{\partial l}{\partial h^1} = \frac{\partial l}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t)
\]

Given \(\frac{\partial l}{\partial h^2} \) if we can compute the Jacobian of each module

\[
\frac{\partial l}{\partial W^2} = \frac{\partial l}{\partial h^2} \frac{\partial h^2}{\partial W^2}
\]

\[
\frac{\partial l}{\partial h^1} =
\]
Backpropagation

- Efficient computation of the gradients by applying the chain rule

\[
\frac{\partial \ell}{\partial h^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h^2} = (W^3)^T (p(c|x) - t)
\]

- Given \(\frac{\partial \ell}{\partial h^2}\) if we can compute the Jacobian of each module

\[
\frac{\partial \ell}{\partial W^2} = \frac{\partial \ell}{\partial h^2} \frac{\partial h^2}{\partial W^2}
\]

\[
\frac{\partial \ell}{\partial h^1} = \frac{\partial \ell}{\partial h^2} \frac{\partial h^2}{\partial h^1}
\]
Toy Code (Matlab): Neural Net Trainer

```matlab
% F-PROP
for i = 1 : nr_layers - 1
    [h{i}  jac{i}]  =  nonlinearity(W{i} * h{i-1} +  b{i});
end
h{nr_layers-1}  =  W{nr_layers-1} * h{nr_layers-2}  +   b{nr_layers-1};
prediction  =  softmax(h{1-1});

% CROSS ENTROPY LOSS
loss  =  -  sum(sum(log(prediction)  .*  target)) / batch_size;

% B-PROP
dh{l-1}  =  prediction  -  target;
for i = nr_layers – 1 : -1 : 1
    Wgrad{i}  =  dh{i} * h{i-1}';
    bgrad{i}  =  sum(dh{i}, 2);
    dh{i-1}  =  (W{i}' * dh{i})  .*  jac{i-1};
end

% UPDATE
for i = 1 : nr_layers - 1
    W{i}  =  W{i}  –  (lr / batch_size)  *  Wgrad{i};
    b{i}  =  b{i}  –  (lr / batch_size)  *  bgrad{i};
end
```
People are very good at recognizing shapes

- Intrinsically difficult, computers are bad at it

Some reasons why it is difficult:

- **Segmentation**: Real scenes are cluttered
- **Invariances**: We are very good at ignoring all sorts of variations that do not affect shape
- **Deformations**: Natural shape classes allow variations (faces, letters, chairs)
- A huge amount of computation is required
How to deal with large Input Spaces

- Images can have millions of pixels, i.e., x is very high dimensional
How to deal with large Input Spaces

- Images can have millions of pixels, i.e., x is very high dimensional
- Prohibitive to have fully-connected layer
Images can have millions of pixels, i.e., x is very high dimensional

Prohibitive to have fully-connected layer

We can use a locally connected layer
Images can have millions of pixels, i.e., x is very high dimensional

Prohibitive to have fully-connected layer

We can use a locally connected layer

This is good when the input is registered
Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).

Ranzato
The invariance problem

- Our perceptual systems are very good at dealing with invariances
 - translation, rotation, scaling
 - deformation, contrast, lighting, rate

- We are so good at this that it's hard to appreciate how difficult it is
 - It's one of the main difficulties in making computers perceive
 - We still don't have generally accepted solutions
Locally Connected Layer

STATIONARITY? Statistics is similar at different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).
The replicated feature approach

- Adopt approach apparently used in monkey visual systems
- Use many different copies of the same feature detector.
 - Copies have slightly different positions.
 - Could also replicate across scale and orientation.
 - Tricky and expensive
 - Replication reduces number of free parameters to be learned.
- Use several different feature types, each with its own replicated pool of detectors.
 - Allows each patch of image to be represented in several ways.
Convolutional Neural Net

- Idea: statistics are similar at different locations (Lecun 1998)
- Connect each hidden unit to a small input patch and share the weight across space
- This is called a convolution layer and the network is a convolutional network

Share the same parameters across different locations (assuming input is stationary):
Convolutions with learned kernels
$h_j^n = \max(0, \sum_{k=1}^{K} h_{k}^{n-1} \ast w_{jk}^n)$
Convolutional Layer

\[h_j^n = \max(0, \sum_{k=1}^{K} h_{k,j}^{n-1} \ast w_{jk}^n) \]
Convolutional Layer

\[h_j^n = \max(0, \sum_{k=1}^{K} h_{k}^{n-1} * w_{jk}^n) \]
Convolutional Layer

\[h_j^n = \max(0, \sum_{k=1}^{K} h_{k}^{n-1} \ast w_{jk}^n) \]
Convolutional Layer

\[h_j^n = \max(0, \sum_{k=1}^{K} h_{k}^{n-1} \ast w_{jk}^n) \]
Convolutional Layer

\[h_j^n = \max(0, \sum_{k=1}^{K} h_{k}^{n-1} \ast w_{jk}^n) \]
It is easy to modify the backpropagation algorithm to incorporate linear constraints between the weights.

To constrain: \(w_1 = w_2 \)

we need: \(\Delta w_1 = \Delta w_2 \)

We compute the gradients as usual, and then modify the gradients so that they satisfy the constraints.

compute: \(\frac{\partial E}{\partial w_1} \) and \(\frac{\partial E}{\partial w_2} \)

use: \(\frac{\partial E}{\partial w_1} + \frac{\partial E}{\partial w_2} \) for \(w_1 \) and \(w_2 \)

So if the weights started off satisfying the constraints, they will continue to satisfy them.
Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
By “pooling” (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.
Pooling Options

- **Max Pooling**: return the maximal argument
- **Average Pooling**: return the average of the arguments
- Other types of pooling exist.
If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$
Now let’s make this very **deep** to get a real state-of-the-art object recognition system
Convolutional Neural Networks (CNN)

- Remember from your image processing / computer vision course about filtering?

Input “image”

Filter

[Slide Credit: Sanja Fidler]
If our filter was $[-1, 1]$, we got a vertical edge detector.
Now imagine we want to have many filters (e.g., vertical, horizontal, corners, one for dots). We will use a filterbank.
So applying a filterbank to an image yields a cube-like output, a 3D matrix in which each slice is an output of convolution with one filter.

image (3 channels: R, G, B)

Each slice in this cube is the output of convolution of the image and a filter (in this example an 11x11 filter)

In this example there are 96 filters

In this example our network will always expect a 224x224x3 image.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
So applying a filterbank to an image yields a cube-like output, a 3D matrix in which each slice is an output of convolution with one filter.

image (3 channels: R, G, B)

Each slice in this cube is the output of convolution of the image and a filter.

In this example the filter size is 11x11x3.

We don’t do convolution in every pixel, but in every 4th pixel (in x and y direction)

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Do some additional tricks. A popular one is called max pooling. Any idea why you would do this?

\[O(i, j) = \max_{k \in \{i-1, i, i+1\}, \ \ l \in \{j-1, j, j+1\}} O(k, l) \]

Take each slice in the output cube, and in each pixel compute a max over a small patch around it. This is called max pooling.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Convolutional Neural Networks (CNN)

- Do some additional tricks. A popular one is called **max pooling**. Any idea why you would do this? To get **invariance to small shifts in position**.

\[
O(i, j) = \max_{k \in \{i-1, i, i+1\}, \ l \in \{j-1, j, j+1\}} O(k, l)
\]

Take each slice in the output cube, and in each pixel compute a max over a small patch around it. This is called **max pooling**.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Now add another “layer” of filters. For each filter again do convolution, but this time with the output cube of the previous layer.

Add one more layer of filters

These filters are convolved with the output of the previous layer. The results of each convolution is again a slice in the cube on the right.

What is the dimension of each of these filters?
Convolutional Neural Networks (CNN)

Keep adding a few layers. Any idea what’s the purpose of more layers? Why can’t we just have a full bunch of filters in one layer?

Do it recursively
Have multiple "layers"

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Convolutional Neural Networks (CNN)

- In the end add one or two **fully** (or **densely**) connected layers. In this layer, we don’t do convolution we just do a dot-product between the “filter” and the output of the previous layer.

In the top, most networks add a “densely” connected layer. You can think of this as a filter, and the output value is a dot product between the filter and the output cube of the previous layer.

What are the dimensions of this filter in this example? How many such filters are on this layer?

[Slide Credit: Sanja Fidler. Pic adopted from: A. Krizhevsky]
Add one final layer: a \textit{classification} layer. Each dimension of this vector tells us the probability of the input image being of a certain class.

Add a \textit{classification} \textquotedblleft layer	extquotedblright.

For an input image, the value in a particular dimension of this vector tells you the probability of the corresponding object class.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Convoluotional Neural Networks (CNN)

- The trick is to not hand-fix the weights, but to *train* them. Train them such that when the network sees a picture of a dog, the last layer will say “dog”.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Convolutional Neural Networks (CNN)

- Or when the network sees a picture of a cat, the last layer will say “cat”.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Convolutional Neural Networks (CNN)

- Or when the network sees a picture of a boat, the last layer will say "boat"... The more pictures the network sees, the better.

Train on **lots** of examples. Millions. Tens of millions. Wait a week for training to finish.

Share your network (the weights) with others who are not fortunate enough with GPU power.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
Classification

- Once trained we feed in an image or a crop, run through the network, and read out the class with the highest probability in the last (classif) layer.

What’s the class of this object?
Classification Performance

- Imagenet, main challenge for object classification: http://image-net.org/
- 1000 classes, 1.2M training images, 150K for test
Architecture for Classification

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
Architecture for Classification

Total nr. params: 60M

Total nr. flops: 832M

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
The 2012 Computer Vision Crisis

- Error (5 predictions)

Classification:
- SuperVision
- ISI
- OXFORD-VGG
- XRCE/NRIA
- U. Amsterdam
- LEAR-XRCE

Detection:
- SuperVision
- OXFORD-VGG
- ISI
So Neural Networks are Great

- So networks turn out to be great.
- Everything is deep, even if it’s shallow!
- Companies leading the competitions as they have more computational power
- At this point Google, Facebook, Microsoft, Baidu “steal” most neural network professors/students from academia
So Neural Networks are Great

- But to train the networks you need quite a bit of computational power (e.g., GPU farm). So what do you do?
So Neural Networks are Great

- Buy even more.
So Neural Networks are Great

- And train more layers. 16 instead of 7 before. 144 million parameters.

add more layers

[Figure: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014]

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]

Figure: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014
Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
 - The target values may be unreliable.
 - There is sampling error. There will be accidental regularities just because of the particular training cases that were chosen

- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
 - So it fits both kinds of regularity.
 - If the model is very flexible it can model the sampling error really well. This is a disaster.
Preventing overfitting

- Use a model that has the right capacity:
 - enough to model the true regularities
 - not enough to also model the spurious regularities (assuming they are weaker)

- Standard ways to limit the capacity of a neural net:
 - Limit the number of hidden units.
 - Limit the size of the weights.
 - Stop the learning before it has time to overfit.
Limiting the size of the weights

- Weight-decay involves adding an extra term to the cost function that penalizes the squared weights.

\[C = \ell + \frac{\lambda}{2} \sum_i w_i^2 \]

- Keeps weights small unless they have big error derivatives.

\[\frac{\partial C}{\partial w_i} = \frac{\partial \ell}{\partial w_i} + \lambda w_i \]

when \(\frac{\partial C}{\partial w_i} = 0 \), \(w_i = \frac{1}{\lambda} \frac{\partial \ell}{\partial w_i} \)
The effect of weight-decay

- It prevents the network from using weights that it does not need
 - This can often improve generalization a lot.
 - It helps to stop it from fitting the sampling error.
 - It makes a smoother model in which the output changes more slowly as the input changes.

- But, if the network has two very similar inputs it prefers to put half the weight on each rather than all the weight on one other form of weight decay?
Deciding how much to restrict the capacity

- How do we decide which limit to use and how strong to make the limit?
 - If we use the test data we get an unfair prediction of the error rate we would get on new test data.
 - Suppose we compared a set of models that gave random results, the best one on a particular dataset would do better than chance. But it won’t do better than chance on another test set.

- So use a separate validation set to do model selection.
Using a validation set

- Divide the total dataset into three subsets:
 - **Training data** is used for learning the parameters of the model.
 - **Validation data** is not used for learning but is used for deciding what type of model and what amount of regularization works best.
 - **Test data** is used to get a final, unbiased estimate of how well the network works. We expect this estimate to be worse than on the validation data.

- We could then re-divide the total dataset to get another unbiased estimate of the true error rate.
Preventing overfitting by early stopping

- If we have lots of data and a big model, it's very expensive to keep re-training it with different amounts of weight decay.
- It is much cheaper to start with very small weights and let them grow until the performance on the validation set starts getting worse.
- The capacity of the model is limited because the weights have not had time to grow big.
Why early stopping works

- When the weights are very small, every hidden unit is in its linear range.
 - So a net with a large layer of hidden units is linear.
 - It has no more capacity than a linear net in which the inputs are directly connected to the outputs!
- As the weights grow, the hidden units start using their non-linear ranges so the capacity grows.