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Today

Decision Trees

I entropy
I mutual information

Urtasun & Zemel (UofT) CSC 411: 06-Decision Trees Sep 30, 2015 2 / 24



Another Classification Idea

We could view the decision boundary as being the composition of several
simple boundaries.
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Decision Tree: Example

Yes No 

Yes No Yes No 

Urtasun & Zemel (UofT) CSC 411: 06-Decision Trees Sep 30, 2015 4 / 24



Decision Trees

Yes No 

Yes No Yes No 

Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (class assignments)

In general, a decision tree can represent any binary function
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Decision Tree: Algorithm

Choose an attribute on which to descend at each level.

Condition on earlier (higher) choices.

Generally, restrict only one dimension at a time.

Declare an output value when you get to the bottom

In the orange/lemon example, we only split each dimension once, but that is
not required.

How do you construct a useful decision tree?

We use information theory to guide us
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Two Binary Sequences

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

H(X ) = −
∑
x∈X

p(x) log2 p(x)

0	 1	

8/9 

1/9 

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9 

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

How surprised are we by a new value in the sequence?

How much information does it convey?
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Quantifying Uncertainty: Shannon Entropy

H(X ) = −
∑
x∈X

p(x) log2 p(x)

Shannon Entropy is an extremely powerful concept.

It tells you how much you can compress your data!
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Entropy 
•  For a discrete random variable X, where P(X=xi) = p(xi), the entropy of a 
random variable is: 

•  Distributions that are sharply picked around a few values will have a 
relatively low entropy, whereas those that are spread more evenly across 
many values will have higher entropy  

•  The largest entropy will arise 
from a uniform distribution      
H = -ln(1/30) = 3.40.   

•  Histograms of two probability 
distributions over 30 bins.  

•  For a density defined over continuous random variable, the differential 
entropy is given by:  



Decision Tree: Algorithm

Yes No 

Yes No Yes No 

Choose an attribute on which to descend at each level.

Condition on earlier (higher) choices

Generally, restrict only one dimension at a time.

How do you construct a useful decision tree?

We use information theory to guide us
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Entropy of a Joint Distribution

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100
≈ 1.56bits
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Specific Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given that it is raining?

H(X |Y = y) =
∑
x∈X

p(x |y) log2 p(x |y)

= −24

25
log2

24

25
− 1

25
log2

1

25
≈ 0.24bits
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(Non-Specific) Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(X |Y ) =
∑
y∈Y

p(y)H(X |Y = y)

= −
∑
y∈Y

∑
x∈X

p(x , y) log2 p(x |y)
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(Non-Specific) Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

H(X |Y ) =
∑
y∈Y

p(y)H(X |Y = y)

=
1

4
H(clouds|is raining)) +

3

4
H(clouds|not raining)

≈ 0.75 bits
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Mutual Information

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much information about cloudiness do we get by discovering whether it
is raining?

IG (X |Y ) = H(X )− H(X |Y )

≈ 0.25 bits

Also called information gain in X due to Y

For decision trees, X is the class/label and Y is an attribute
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Constructing Decision Trees

Yes No 

Yes No Yes No 

I made the fruit data partitioning just by eyeballing it.

We can use the mutual information to automate the process.

At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision!
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Decision Tree Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node

2. split examples into groups based on attribute value

3. for each group:

I if no examples – return majority from parent
I else if all examples in same class – return class
I else loop to step 1
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Decision Tree Example: Data

Russell & Norvig example
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Attribute Selection

IG (Y ) = H(X )− H(X |Y )

IG (type) = 1−
[

2

12
H(

1

2
,

1

2
) +

2

12
H(

1

2
,

1

2
) +

4

12
H(

2

4
,

2

4
) +

4

12
H(

2

4
,

2

4
)

]
= 0

IG (Patrons) = 1−
[

2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,

4

6
)

]
≈ 0.541
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Which Tree is Better?
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions in
data

Not too big:

I Computational efficiency (avoid redundant, spurious attributes)
I Avoid over-fitting training examples

Occam’s Razor: find the simplest hypothesis (smallest tree) that fits the
observations

Inductive bias: small trees with informative nodes near the root
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Decision Tree Miscellany

Problems:

I You have exponentially less data at lower levels.
I Too big of a tree can overfit the data.
I Greedy algorithms don’t necessarily yield the global optimum.

In practice, one often regularizes the construction process to try to get small
but highly-informative trees.

Decision trees can also be used for regression on real-valued outputs, but it
requires a different formalism.
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Comparison to k-NN

K-Nearest Neighbors

Decision boundaries: piece-wise

Test complexity:
non-parametric, few parameters
besides (all?) training examples

Decision Trees

Decision boundaries:
axis-aligned, tree structured

Test complexity: attributes and
splits
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Applications of Decision Trees

Can express any Boolean function, but most useful when function depends
critically on few attributes

Bad on: parity, majority functions; also not well-suited to continuous
attributes

Practical Applications:

I Flight simulator: 20 state variables; 90K examples based on expert
pilot’s actions; auto-pilot tree

I Yahoo Ranking Challenge
I Random Forests
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