CSC 411: Lecture 05: Nearest Neighbors

Raquel Urtasun & Rich Zemel

University of Toronto

Sep 28, 2015

Urtasun & Zemel (UofT)

CSC 411: 05-Nearest Neighbors Sep 28, 2015 1/13



@ Non-parametric models

» distance
» non-linear decision boundaries
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Classification: Oranges and Lemons
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Classification: Oranges and Lemons

Can construct simple
linear decision
boundary:
y = sign(wg + w;x,
+ W,X,)

height (cm)

/ (<]
4r ° e oranges|]
A lemons
4 6 8 10

width (cm)

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015



What is the meaning of "linear” classification

@ Classification is intrinsically non-linear

» It puts non-identical things in the same class, so a difference in the
input vector sometimes causes zero change in the answer
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What is the meaning of "linear” classification

@ Classification is intrinsically non-linear

» It puts non-identical things in the same class, so a difference in the
input vector sometimes causes zero change in the answer

@ Linear classification means that the part that adapts is linear (just like linear
regression)
z(x) =w'x+ wp

with adaptive w, wy
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What is the meaning of "linear” classification

@ Classification is intrinsically non-linear

» It puts non-identical things in the same class, so a difference in the
input vector sometimes causes zero change in the answer

@ Linear classification means that the part that adapts is linear (just like linear

regression)
z(x) =w'x+ wp

with adaptive w, wy

@ The adaptive part is follow by a non-linearity to make the decision

y(x) = f(z(x))
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What is the meaning of "linear” classification

@ Classification is intrinsically non-linear

» It puts non-identical things in the same class, so a difference in the
input vector sometimes causes zero change in the answer

@ Linear classification means that the part that adapts is linear (just like linear
regression)
z(x) =w'x+ wp

with adaptive w, wy

@ The adaptive part is follow by a non-linearity to make the decision

y(x) = f(z(x))

@ What f have we seen so far in class?
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Classification as Induction

A
101 2
A
Ao .. <)
A
A A
&
g 8 éA ® ..
S A7 o8
£ X1
2
[}
ey 6’
i
(<]
4r o @ oranges
A lemons
4 6 8 10
width (cm)

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 6 /13



Instance-based Learning

@ Alternative to parametric model is non-parametric
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Instance-based Learning

@ Alternative to parametric model is non-parametric

@ Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)
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@ Alternative to parametric model is non-parametric

@ Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)

@ Learning amounts to simply storing training data
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Instance-based Learning

@ Alternative to parametric model is non-parametric

@ Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)

@ Learning amounts to simply storing training data

@ Test instances classified using similar training instances
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Instance-based Learning

Alternative to parametric model is non-parametric

Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)

Learning amounts to simply storing training data
@ Test instances classified using similar training instances
@ Embodies often sensible underlying assumptions:

» Output varies smoothly with input
» Data occupies sub-space of high-dimensional input space
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space

@ Target function value for new query estimated from known value of nearest
training example(s)
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space

@ Target function value for new query estimated from known value of nearest
training example(s)

@ Distance typically defined to be Euclidean:
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space

@ Target function value for new query estimated from known value of nearest
training example(s)

@ Distance typically defined to be Euclidean:

@ Algorithm

1. find example (x*, t*) closest to the test instance x(9)
2. output y(9) = ¢*
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space

@ Target function value for new query estimated from known value of nearest
training example(s)

@ Distance typically defined to be Euclidean:

@ Algorithm

1. find example (x*, t*) closest to the test instance x(9)
2. output y(9) = ¢*

@ Note: we don't need to compute the square root. Why?
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dx,y) = llx =yl
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dx,y) = llx =yl
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d(x,y) = learning
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Nearest Neighbors Decision Boundaries

@ Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred
@ Decision boundaries: Voronoi diagram visualization

» show how input space divided into classes
» each line segment is equidistant between two points of opposite classes
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k Nearest Neighbors

@ Nearest neighbors sensitive to mis-labeled data ( “class noise”) — smooth by
having k nearest neighbors vote
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k Nearest Neighbors

@ Nearest neighbors sensitive to mis-labeled data ( “class noise”) — smooth by
having k nearest neighbors vote

@ Algorithm:

1. find k examples {x(), ()} closest to the test instance x
2. classification output is majority class

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015



k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important

» normalize scale
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale

@ lIrrelevant, correlated attributes add noise to distance measure
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale
@ lIrrelevant, correlated attributes add noise to distance measure

» eliminate some attributes
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale
@ lIrrelevant, correlated attributes add noise to distance measure

> eliminate some attributes
» or vary and possibly adapt weight of attributes
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale
@ lIrrelevant, correlated attributes add noise to distance measure

> eliminate some attributes
» or vary and possibly adapt weight of attributes

@ Non-metric attributes (symbols)
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important

» normalize scale

@ lIrrelevant, correlated attributes add noise to distance measure

> eliminate some attributes
» or vary and possibly adapt weight of attributes

@ Non-metric attributes (symbols)

» Hamming distance

Sep 28, 2015
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale
@ lIrrelevant, correlated attributes add noise to distance measure

> eliminate some attributes
» or vary and possibly adapt weight of attributes

@ Non-metric attributes (symbols)
» Hamming distance

@ Brute-force approach: calculate Euclidean distance to test point from each
stored point, keep closest: O(dn?). We need to reduce computational

burden:

1. Use subset of dimensions
2. Use subset of examples
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale
@ lIrrelevant, correlated attributes add noise to distance measure

> eliminate some attributes
» or vary and possibly adapt weight of attributes

@ Non-metric attributes (symbols)
» Hamming distance

@ Brute-force approach: calculate Euclidean distance to test point from each
stored point, keep closest: O(dn?). We need to reduce computational

burden:

1. Use subset of dimensions
2. Use subset of examples

> Remove examples that lie within Voronoi region
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important
» normalize scale
@ lIrrelevant, correlated attributes add noise to distance measure

> eliminate some attributes
» or vary and possibly adapt weight of attributes

@ Non-metric attributes (symbols)
» Hamming distance

@ Brute-force approach: calculate Euclidean distance to test point from each
stored point, keep closest: O(dn?). We need to reduce computational

burden:

1. Use subset of dimensions
2. Use subset of examples
> Remove examples that lie within Voronoi region
> Form efficient search tree (kd-tree), use Hashing (LSH), etc
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Decision Boundary K-NN
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K-NN Summary

height (cm)
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@ Single parameter (k) — how do we set it?
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K-NN Summary

height (cm)

6 8
width (cm)

@ Single parameter (k) — how do we set it?

@ Naturally forms complex decision boundaries; adapts to data density
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K-NN Summary

height (cm)

6 8
width (cm)

@ Single parameter (k) — how do we set it?
@ Naturally forms complex decision boundaries; adapts to data density
@ Problems:

» Sensitive to class noise.

» Sensitive to dimensional scales.

» Distances are less meaningful in high dimensions
» Scales with number of examples
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K-NN Summary

height (cm)

6 8
width (cm)

@ Single parameter (k) — how do we set it?
@ Naturally forms complex decision boundaries; adapts to data density

@ Problems:

» Sensitive to class noise.

» Sensitive to dimensional scales.

» Distances are less meaningful in high dimensions
» Scales with number of examples

@ Inductive Bias: What kind of decision boundaries do we expect to find?
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* Similar data points map to nearby
codes

* Dissimilar data points map to distant
codes
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Examples of using Nearest
Neighbor Approaches



Information Retrieval using NN

European Community 2-D LSA space

Interbank Markets Monetary/Economic

< .. Disasters and
:470 s Accidents

Leading
Economic
Indicators

T Government
ég(r:r?il:mgtsS/ 5t Borrowings

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the
training set.



Information Retrieval

Reuters Dataset

== Deep Generative Model
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Semantic Hashing
(using Hoamming Distance)
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Semantic v
Hashing Government
Function Borrowing
£
X
Document

Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.

* Retrieve similar documents stored at the nearby addresses with no
search at all.

(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database
using Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
* Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,



Retrieval using Nearest Neighbors

fluffy

delicious




The dogs are in the snow in ~ Four men playing basketball , A boy skateboarding

front of a fence . two from each team .

Two men and a woman Women participate in A man is doing tricks on a bicycle
smile at the camera . a skit onstage . on ramps in front of a crowd .



Tagging and Retrieval using NN

mosque, tower, 9 ski, skiing,
building, cathedral, G6r — . skiers, skiiers,
dome, castle snowmobile
bowl, cup,
kitchen, stove, oven, soup, cups,
coffee

refrigerator,
microwave




