CSC 411: Lecture 05: Nearest Neighbors

Raquel Urtasun & Rich Zemel

University of Toronto

Sep 28, 2015

• Non-parametric models

- distance
- non-linear decision boundaries

Classification: Oranges and Lemons

Classification: Oranges and Lemons

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- Linear classification means that the part that adapts is linear (just like linear regression)

$$z(x) = \mathbf{w}^T \mathbf{x} + w_0$$

with adaptive **w**, w₀

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- Linear classification means that the part that adapts is linear (just like linear regression)

$$z(x) = \mathbf{w}^T \mathbf{x} + w_0$$

with adaptive **w**, *w*₀

• The adaptive part is follow by a non-linearity to make the decision

$$y(\mathbf{x}) = f(z(\mathbf{x}))$$

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- Linear classification means that the part that adapts is linear (just like linear regression)

$$z(x) = \mathbf{w}^T \mathbf{x} + w_0$$

with adaptive **w**, w₀

• The adaptive part is follow by a non-linearity to make the decision

$$y(\mathbf{x}) = f(z(\mathbf{x}))$$

• What f have we seen so far in class?

Classification as Induction

• Alternative to parametric model is non-parametric

- Alternative to parametric model is non-parametric
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)

- Alternative to parametric model is non-parametric
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
- Learning amounts to simply storing training data

- Alternative to parametric model is non-parametric
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
- Learning amounts to simply storing training data
- Test instances classified using similar training instances

- Alternative to parametric model is non-parametric
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
- Learning amounts to simply storing training data
- Test instances classified using similar training instances
- Embodies often sensible underlying assumptions:
 - Output varies smoothly with input
 - Data occupies sub-space of high-dimensional input space

• Assume training examples correspond to points in d-dimensional Euclidean space

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
- Distance typically defined to be Euclidean:

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^{d} (x_j^{(a)} - x_j^{(b)})^2}$$

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
- Distance typically defined to be Euclidean:

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^d (x_j^{(a)} - x_j^{(b)})^2}$$

Algorithm

- 1. find example (\mathbf{x}^*, t^*) closest to the test instance $\mathbf{x}^{(q)}$
- 2. output $y^{(q)} = t^*$

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
- Distance typically defined to be Euclidean:

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^d (x_j^{(a)} - x_j^{(b)})^2}$$

Algorithm

- 1. find example (\mathbf{x}^*, t^*) closest to the test instance $\mathbf{x}^{(q)}$
- 2. output $y^{(q)} = t^*$
- Note: we don't need to compute the square root. Why?

Nearest Neighbors Decision Boundaries

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred
- Decision boundaries: Voronoi diagram visualization
 - show how input space divided into classes
 - each line segment is equidistant between two points of opposite classes

 \bullet Nearest neighbors sensitive to mis-labeled data ("class noise") \to smooth by having k nearest neighbors vote

- \bullet Nearest neighbors sensitive to mis-labeled data ("class noise") \to smooth by having k nearest neighbors vote
- Algorithm:
 - 1. find k examples $\{\mathbf{x}^{(i)}, t^{(i)}\}$ closest to the test instance **x**
 - 2. classification output is majority class

$$y = \arg \max_{t^{(z)}} \sum_{r=1}^k \delta(t^{(z)}, t^{(r)})$$

• Some attributes have larger ranges, so are treated as more important

- Some attributes have larger ranges, so are treated as more important
 - normalize scale

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
- Non-metric attributes (symbols)

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
- Non-metric attributes (symbols)
 - Hamming distance

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
- Non-metric attributes (symbols)
 - Hamming distance
- Brute-force approach: calculate Euclidean distance to test point from each stored point, keep closest: $O(dn^2)$. We need to reduce computational burden:
 - 1. Use subset of dimensions
 - 2. Use subset of examples

k Nearest Neighbors: Issues & Remedies

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
- Non-metric attributes (symbols)
 - Hamming distance
- Brute-force approach: calculate Euclidean distance to test point from each stored point, keep closest: $O(dn^2)$. We need to reduce computational burden:
 - 1. Use subset of dimensions
 - 2. Use subset of examples
 - Remove examples that lie within Voronoi region

k Nearest Neighbors: Issues & Remedies

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
- Non-metric attributes (symbols)
 - Hamming distance
- Brute-force approach: calculate Euclidean distance to test point from each stored point, keep closest: $O(dn^2)$. We need to reduce computational burden:
 - 1. Use subset of dimensions
 - 2. Use subset of examples
 - Remove examples that lie within Voronoi region
 - ▶ Form efficient search tree (kd-tree), use Hashing (LSH), etc

Decision Boundary K-NN

Urtasun & Zemel (UofT)

Sep 28, 2015 12 / 13

 $\bullet~$ Single parameter (k) $\rightarrow~$ how do we set it?

- Single parameter (k) \rightarrow how do we set it?
- Naturally forms complex decision boundaries; adapts to data density

- Single parameter $(k) \rightarrow how do we set it?$
- Naturally forms complex decision boundaries; adapts to data density
- Problems:
 - Sensitive to class noise.
 - Sensitive to dimensional scales.
 - Distances are less meaningful in high dimensions
 - Scales with number of examples

- Single parameter $(k) \rightarrow how do we set it?$
- Naturally forms complex decision boundaries; adapts to data density
- Problems:
 - Sensitive to class noise.
 - Sensitive to dimensional scales.
 - Distances are less meaningful in high dimensions
 - Scales with number of examples
- Inductive Bias: What kind of decision boundaries do we expect to find?

- Similar data points map to nearby codes
- Dissimilar data points map to distant codes

Query

Euclidean NNs

Hamming NNs

Query

Euclidean NNs

Hamming NNs

Query

Euclidean NNs

Hamming NNs

Examples of using Nearest Neighbor Approaches

Information Retrieval using NN

• The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into **402,207 training** and **402,207 test)**.

• "Bag-of-words" representation: each article is represented as a vector containing the counts of the most frequently used 2000 words in the training set.

Information Retrieval

Reuters dataset: 804,414 newswire stories.

Semantic Hashing (using Hamming Distance)

- Learn to map documents into semantic 20-D binary codes.
- Retrieve similar documents stored at the nearby addresses with no search at all.

(Salakhutdinov and Hinton, SIGIR 2007)

Searching Large Image Database using Binary Codes

• Map images into binary codes for fast retrieval.

- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
- Norouzi and Fleet, ICML 2011,

Retrieval using Nearest Neighbors

fluffy

delicious

Retrieving Sentences using 1-NN

The dogs are in the snow in front of a fence .

Four men playing basketball , two from each team .

A boy skateboarding

Two men and a woman smile at the camera .

Women participate in a skit onstage .

A man is doing tricks on a bicycle on ramps in front of a crowd .

Tagging and Retrieval using NN

mosque, tower, building, cathedral, dome, castle

ski, skiing, skiers, skiiers, snowmobile

kitchen, stove, oven, refrigerator, microwave

bowl, cup, soup, cups, coffee

beach

snow