Today

- Non-parametric models
 - distance
 - non-linear decision boundaries
Can construct simple linear decision boundary:

$$y = \text{sign}(w_0 + w_1 x_1 + w_2 x_2)$$
What is the meaning of “linear” classification

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
Classification is intrinsically non-linear

- It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer

Linear classification means that the part that adapts is linear (just like linear regression)

\[z(x) = w^T x + w_0 \]

with adaptive \(w, w_0 \)
What is the meaning of "linear" classification

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- **Linear classification** means that the part that adapts is linear (just like linear regression)
 \[z(x) = w^T x + w_0 \]
 with adaptive \(w, w_0 \)
- The adaptive part is followed by a non-linearity to make the decision
 \[y(x) = f(z(x)) \]
What is the meaning of "linear" classification

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- **Linear classification** means that the part that adapts is linear (just like linear regression)
 \[z(x) = w^T x + w_0 \]
 with adaptive \(w, w_0 \)
- The adaptive part is followed by a non-linearity to make the decision
 \[y(x) = f(z(x)) \]
- What \(f \) have we seen so far in class?
Instance-based Learning

- Alternative to parametric model is non-parametric
Alternative to parametric model is non-parametric

Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
Instance-based Learning

- Alternative to parametric model is **non-parametric**
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
- Learning amounts to simply **storing** training data
Instance-based Learning

- Alternative to parametric model is non-parametric
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
- **Learning** amounts to simply storing training data
- Test instances classified using similar training instances
Instance-based Learning

- Alternative to parametric model is non-parametric
- Simple methods for approximating discrete-valued or real-valued target functions (classification or regression problems)
- Learning amounts to simply storing training data
- Test instances classified using similar training instances
- Embodies often sensible underlying assumptions:
 - Output varies smoothly with input
 - Data occupies sub-space of high-dimensional input space
Nearest Neighbors

- Assume training examples correspond to points in d-dimensional Euclidean space
Nearest Neighbors

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
Nearest Neighbors

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
- Distance typically defined to be Euclidean:

\[||x^{(a)} - x^{(b)}||_2 = \sqrt{\sum_{j=1}^{d} (x_{j}^{(a)} - x_{j}^{(b)})^2} \]
Nearest Neighbors

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
- Distance typically defined to be Euclidean:

\[||x^{(a)} - x^{(b)}||_2 = \sqrt{\sum_{j=1}^{d} (x_{j}^{(a)} - x_{j}^{(b)})^2} \]

- Algorithm
 1. find example \((x^*, t^*)\) closest to the test instance \(x^{(q)}\)
 2. output \(y^{(q)} = t^*\)
Nearest Neighbors

- Assume training examples correspond to points in d-dimensional Euclidean space
- Target function value for new query estimated from known value of nearest training example(s)
- Distance typically defined to be Euclidean:

\[||x^{(a)} - x^{(b)}||_2 = \sqrt{\sum_{j=1}^{d} (x_j^{(a)} - x_j^{(b)})^2} \]

- Algorithm
 1. find example \((x^*, t^*)\) closest to the test instance \(x^{(q)}\)
 2. output \(y^{(q)} = t^*\)

- Note: we don’t need to compute the square root. Why?
$$d(x, y) = \|x - y\|_2$$
$d(x, y) = \|x - y\|_2$
\[d(x, y) = \text{learning} \]
Nearest Neighbors Decision Boundaries

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred.

- Decision boundaries: Voronoi diagram visualization
 - show how input space divided into classes
 - each line segment is equidistant between two points of opposite classes
Nearest neighbors sensitive to mis-labeled data ("class noise") → smooth by having k nearest neighbors vote
k Nearest Neighbors

- Nearest neighbors sensitive to mis-labeled data ("class noise") → smooth by having k nearest neighbors vote

- Algorithm:
 1. find k examples \(\{x^{(i)}, t^{(i)}\} \) closest to the test instance \(x \)
 2. classification output is majority class

\[
y = \arg \max_{t^{(z)}} \sum_{r=1}^{k} \delta(t^{(z)}, t^{(r)})
\]
Some attributes have larger ranges, so are treated as more important.
Some attributes have larger ranges, so are treated as more important
 ▶ normalize scale
Some attributes have larger **ranges**, so are treated as more important

- normalize scale

Irrelevant, correlated attributes add noise to distance measure
Some attributes have larger ranges, so are treated as more important
 ▶ normalize scale

Irrelevant, correlated attributes add noise to distance measure
 ▶ eliminate some attributes
k Nearest Neighbors: Issues & Remedies

- Some attributes have larger **ranges**, so are treated as more important
 - normalize scale
- **Irrelevant, correlated** attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
Some attributes have larger *ranges*, so are treated as more important
 ▶ normalize scale

Irrelevant, correlated attributes add noise to distance measure
 ▶ eliminate some attributes
 ▶ or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)
Some attributes have larger ranges, so are treated as more important
 ▶ normalize scale

Irrelevant, correlated attributes add noise to distance measure
 ▶ eliminate some attributes
 ▶ or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)
 ▶ Hamming distance
Some attributes have larger ranges, so are treated as more important

- normalize scale

Irrelevant, correlated attributes add noise to distance measure

- eliminate some attributes
- or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)

- Hamming distance

Brute-force approach: calculate Euclidean distance to test point from each stored point, keep closest: \(O(dn^2) \). We need to reduce computational burden:

1. Use subset of dimensions
2. Use subset of examples
Some attributes have larger ranges, so are treated as more important
 ▶ normalize scale

Irrelevant, correlated attributes add noise to distance measure
 ▶ eliminate some attributes
 ▶ or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)
 ▶ Hamming distance

Brute-force approach: calculate Euclidean distance to test point from each stored point, keep closest: \(O(dn^2) \). We need to reduce computational burden:
 1. Use subset of dimensions
 2. Use subset of examples
 ▶ Remove examples that lie within Voronoi region
Some attributes have larger ranges, so are treated as more important
 ▶ normalize scale

Irrelevant, correlated attributes add noise to distance measure
 ▶ eliminate some attributes
 ▶ or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)
 ▶ Hamming distance

Brute-force approach: calculate Euclidean distance to test point from each stored point, keep closest: $O(dn^2)$. We need to reduce computational burden:
 1. Use subset of dimensions
 2. Use subset of examples
 ▶ Remove examples that lie within Voronoi region
 ▶ Form efficient search tree (kd-tree), use Hashing (LSH), etc
K-NN Summary

- Single parameter (k) → how do we set it?
K-NN Summary

- Single parameter (k) → how do we set it?
- Naturally forms complex decision boundaries; adapts to data density

Problems:
- Sensitive to class noise.
- Sensitive to dimensional scales.
- Distances are less meaningful in high dimensions.
- Scales with number of examples.

Inductive Bias: What kind of decision boundaries do we expect to find?

Urtasun & Zemel (UofT)
CSC 411: 05-Nearest Neighbors
Sep 28, 2015
K-NN Summary

- Single parameter (k) → how do we set it?
- Naturally forms complex decision boundaries; adapts to data density
- Problems:
 - Sensitive to class noise.
 - Sensitive to dimensional scales.
 - Distances are less meaningful in high dimensions
 - Scales with number of examples
K-NN Summary

- Single parameter \((k)\) \(\rightarrow\) how do we set it?
- Naturally forms complex decision boundaries; adapts to data density
- Problems:
 - Sensitive to class noise.
 - Sensitive to dimensional scales.
 - Distances are less meaningful in high dimensions
 - Scales with number of examples
- Inductive Bias: What kind of decision boundaries do we expect to find?
• **Similar** data points map to **nearby** codes

• **Dissimilar** data points map to **distant** codes

Slide Credit: Mohammad Norouzi
Hash buckets
Query

Euclidean NNs

Hamming NNs

Slide Credit: Mohammad Norouzi
Query

Euclidean NNs

Hamming NNs

Slide Credit: Mohammad Norouzi
Query

Euclidean NNs

Hamming NNs

Slide Credit: Mohammad Norouzi
Examples of using Nearest Neighbor Approaches
Information Retrieval using NN

- The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into **402,207 training** and **402,207 test**).
- “Bag-of-words” representation: each article is represented as a vector containing the counts of the most frequently used 2000 words in the training set.
Information Retrieval

Reuters Dataset

Deep Generative Model
Latent Semantic Analysis
Latent Dirichlet Allocation

Reuter dataset: 804,414 newswire stories.
Semantic Hashing (using Hamming Distance)

• Learn to map documents into **semantic 20-D binary codes**.
• Retrieve similar documents stored at the nearby addresses **with no search at all**.

(Salakhutdinov and Hinton, SIGIR 2007)
Searching Large Image Database using Binary Codes

• Map images into binary codes for fast retrieval.

- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011
- Norouzi and Fleet, ICML 2011,
Retrieval using Nearest Neighbors

fluffy
delicious
The dogs are in the snow in front of a fence.

Four men playing basketball, two from each team.

A boy skateboarding.

Two men and a woman smile at the camera.

Women participate in a skit onstage.

A man is doing tricks on a bicycle on ramps in front of a crowd.
Tagging and Retrieval using NN

mosque, tower, building, cathedral, dome, castle

kitchen, stove, oven, refrigerator, microwave

ski, skiing, skiers, skiiers, snowmobile

bowl, cup, soup, cups, coffee

beach

snow