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Abstract

We introduce a novel learning algorithm for
binary pairwise similarity measurements on a
set of objects. The algorithm delivers an em-
bedding of the objects into a vector represen-
tation space that strictly respects the known
similarities, in the sense that objects known
to be similar are always closer in the embed-
ding than those known to be dissimilar. Sub-
ject to this constraint, our method selects the
mapping in which the variance of the embed-
ded points is maximized. This has the effect
of favoring embeddings with low effective di-
mensionality. The related optimization prob-
lem can be cast as a convex Semidefinite Pro-
gram (SDP). We also present a parametric
version of the problem, which can be used for
embedding out of sample points. The para-
metric version uses kernels to obtain non-
linear maps, and can also be solved using an
SDP. We apply the two algorithms to an im-
age embedding problem, where it effectively
captures the low dimensional structure cor-
responding to camera viewing parameters.

1 Learning from Binary Similarity

Measurements

Often in data analysis our goal is to learn something
about the relationship between entities despite hav-
ing only limited quantitative measurements. In par-
ticular, in certain domains it may not be possible to
naturally represent objects (e.g. proteins) in a vector
space and thus we may not be able to associate ob-
jects with points in a feature space. Furthermore, it
may be difficult to obtain real-valued labels or to mea-
sure a quantitative numerical “distance” or “dissimi-
larity” between objects. However, it is often possible
to obtain sparse binary similarity measurements on a

limited number of pairs of objects which tell us if the
pair is known to be related/linked or known not to be
(e.g. the presence or absence of functional/physical
interactions between proteins).

Insight into such data may be obtained by associating
each object with a point in some abstract represen-
tation space, which for visualization purposes is of-
ten two or three dimensional. This embedding should
naturally reflect the known relations between the ob-
jects. Here we present a learning algorithm for such
situations which, given a similarity matrix, delivers
an embedding of the objects that strictly respects the
known similarities. Namely, objects known to be simi-

lar are always closer in the embedding space than those

known to be dissimilar. If input constraints are sparse
or the embedding space has multiple dimensions, many
such embeddings may exist; our method selects among
them the one in which the mean distance between dis-

similar embedded points is as large as possible, and the

mean distance between similar points is as small as

possible, an idea related to the Semidefinite Embed-
ding (SDE) method of Weinberger and Saul (Wein-
berger & Saul, 2004).1 This has the effect of unfolding

the mapping and, interestingly, favoring embeddings
with low effective dimensionality.

We formulate both parametric and non-parametric
variants of the problem, showing that they both re-
sult in convex Semidefinite Programs (SDP) (Boyd
& Vandenberghe, 2004). In the non-parametric ver-
sion, objects may be mapped to arbitrary points in
the representation space, whereas the parametric ver-
sion assumes that objects have associated with them
some feature vector and that the mapping is given by
a function of this feature vector. Specifically we take
this function to be a linear projection in some (possi-
bly infinite dimensional) space where dot products are
given by a kernel. The parametric version allows us
to generalize the embedding to future unseen objects

1This method is also sometimes referred to as Maximum
Variance Unfolding (Sun et al., 2006).



which are not part of the training procedure and which
do not have known similarity relations with other ob-
jects, as long as the new objects have an associated
feature vector from which we can compute their em-
bedding.

We use our method to embed sets of images taken un-
der different conditions, and show that it successfully
captures the low dimensional manifold corresponding
to camera position.

2 Pairwise Semidefinite Embedding -

Problem Formalization

The input to our method is a set of n objects X =
{1, . . . , n} and a set of similarity/dissimilarity rela-
tions sij ∈ {−1, 0, 1}. When sij = 1, the pair (i, j)
is considered similar, and when sij = −1 it is dissim-
ilar. If no similarity data is available, we set sij = 0.
The desired output is a set of points φi ∈ <p for i ∈ X .
The points should respect the similarity structure given
by the pairwise binary relations. As in standard MDS
(Cox & Cox, 1984), we will use Euclidean distances in
<p to reflect the original similarities, although here the
similarities are highly non-metric, taking on values of
{±1, 0} only. Specifically, we will require that the em-
bedding φi of an object i will always be closer (using
distance in <p) to the embeddings of points similar
to it than to the embeddings of points dissimilar to
it. No constraint is placed on the distances between
embeddings of points for which sij = 0.

Importantly, our method does not require as input any
metric information other than binary similarity rela-
tions, and can thus be used with a much wider vari-
ety of inputs than traditional multidimensional scaling
(Cox & Cox, 1984) or more advanced local-distance
preservation methods (Tenenbaum et al., 2000; Wein-
berger & Saul, 2004).

We now formalize the constraints on the embedding φ.
If all objects similar to i are embedded closer to it than
dissimilar ones, there should exist a set of radii bi ≥ 0
such that φj for all j similar to i lie within a sphere
of radius bi centered on φi, and φk for all k dissimilar
to i lie outside this sphere. If we denote distances in
the embedding by d2

ij = ‖φi − φj‖2, we can capture
the above geometric constraint (illustrated in Figure
1) with a simple algebraic inequality (Equation 1):

sijd
2

ij ≤ sijbi ∀ij (1)

Note that the radii bi are not known in advance and
will also need to be found by the embedding algorithm.

We shall also find it useful to remove the translation
and scaling invariance of the embedding, , by requiring
it to be centered at the origin and have a bounded
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Figure 1: An illustration of the embedding objective.
Similar points (xi,xj) should be more closely mapped
than dissimilar ones (xi,xk).

mean distance from the origin. These two constraints
can be represented as:

∑

i

φi = 0 ,
∑

ij

d2

ij ≤ 1 (2)

Although the centering constraint is not strictly nec-
essary, it improves the numerical behavior of some of
the algorithms, and simplifies some of the derivations.

To summarize, we are seeking a mapping φ which sat-
isfies the constraints in Equations 1 and 2. Clearly,
many embeddings may satisfy the pairwise constraints
(e.g. mapping all points to the origin. Note how-
ever, that this solution can be easily avoided by adding
a margin requirement such as bi ≥ 1 as in (Shalev-
Shwartz et al., 2004). We shall see that this will not
be needed in our method since we will be explicitly
maximizing variance.). To enhance visualization, we
shall prefer mappings which minimize distances be-
tween similar points, while maximizing distances be-
tween dissimilar points. We can achieve this by min-
imizing the following objective (subject to the con-
straints in Equations 1 & 2):

f(φ) =
1

nS

∑

ij:sij=1

d2

ij −
1

nD

∑

ij:sij=−1

d2

ij (3)

where we define nS , nD to be the number of similar
and dissimilar pairs respectively. In what follows we
shall assume that nS = nD so we can write f(φ) =∑

ij sijd
2

ij . This is just for notational convenience, and
all our results apply when nS 6= nD.

We note that the above objective has the effect of
stretching the embedding, as in SDE (Weinberger &
Saul, 2004), and will thus prefer low dimensional so-
lutions (i.e. embeddings with intrinsic dimensionality
lower than p) when those are available.

Thus, the complete pairwise embedding problem
(PAIREMB) is to minimize

∑
ij sijd

2

ij with respect to
the n vectors φi ∈ <p and the radii bi ≥ 0, subject to
the pairwise constraints sijd

2

ij ≤ sijbi and the center-

ing and scaling constraints
∑

i φi = 0,
∑

ij d2

ij ≤ 1.



Unfortunately, this optimization problem is highly
non-convex and may have multiple local minima. The
main source of non-convexity is the constraint φi ∈ <p.
In the next section we suggest an approach for ap-
proximating the above optimization by formulating a
convex problem using semidefinite programming.

3 The Non-Parametric Pairwise

Semidefinite Embedding Method

The close link between Euclidean distances and Pos-
itive Semidefinite (PSD) matrices allows us to recast
the above problem in a manner simpler to solve, al-
though the solution may be approximate in some cases.
Define a PSD Gram matrix G (of rank p) with entries
gij = φi ·φj ; then d2

ij = gii+gjj−2gij . Conversely, any

PSD matrix G of rank p can be written as G = ΦΦT

where Φ (the square root of G) is a matrix of size
n × p. Thus the mapping between PSD matrices of
rank p and p dimensional embeddings is one to one.
We can therefore recast the PAIREMB optimization
above in terms of G instead of φ, replacing the con-
straint φi ∈ <p by the constraint that G is of rank
p. The other constraints also have simple expressions
under this new formulation:

∑
i φi = 0 → ∑

ij gij = 0

∑
ij d2

ij ≤ 1 → ∑
i gii ≤ 1

(4)

This problem is still non-convex since the set of PSD
matrices of rank p < n is not convex. However for
p = n this set is convex, and thus the rank-relaxed
PAIREMB problem becomes tractable, and can be
solved using standard semidefinite program (SDP)
solvers, since the objective and all the constraints are
linear in the elements of G. We call this new optimiza-
tion “Pairwise Semidefinite Embedding” (PSDE). It is
equivalent to PAIREMB when p = n (but not when
p < n):

PSDE:

minG,b

∑
ij sij(gii + gjj − 2gij)

s.t. sij(gii + gjj − 2gij) ≤ sijbi ∀ij∑
i gii ≤ 1∑
ij gij = 0

G º 0 bi ≥ 0 ∀i

To obtain a p dimensional embedding from G we use a
standard spectral decomposition as in (Weinberger &
Saul, 2004), and consider only the p leading eigenval-
ues. The main drawback of the PSDE problem is that
it is cast in a dimension n which is usually much higher

than the typical target dimension p = 2, 3. However,
because of the form of the objective function, which
unfolds embeddings, this problem often results in so-
lutions with low effective dimensionality (i.e., the ef-
fective rank of G is small). Of course, if the optimal
G is of rank p, we are guaranteed that it is also a so-
lution to PAIREMB, since PSDE is less constrained
than PAIREMB. In all the experiments we performed
the effective rank of G was much lower than n.

4 Parametric Pairwise Embeddings

and Kernel PSDE

In the previous two sections, we assumed that X was
simply a set of objects, which were not necessarily rep-
resented as real vectors. In such cases, the embedding
cannot easily be generalized to new objects. However,
if the objects X do have feature vector representations,
i.e., xi ∈ <q, we may seek an embedding which is an
explicit function of these features φ : <q → <p.

Perhaps the simplest form of such a mapping is a linear
map φ(x) = Ax. While this would be quite limited in
the original feature space, it can be made much more
expressive using the well known kernel trick (Schölkopf
& Smola, 2002), as we show below. The goal of para-
metric pairwise embedding is to find a matrix A such
that the embedding φ(x) solves the non-parametric
PAIREMB problem. The SDP version of the problem
is to find a matrix A which solves the PSDE problem.

Since we shall be interested in using kernels in what
follows, we augment the PSDE problem by adding a
regularization term γ‖A‖2 to its objective the (γ is a
positive regularization factor). It can be shown that
the A which solves this regularized PSDE has the form
A = WX, where the matrix X has xi as rows and W
is a matrix of size p×n (i.e. the “representer theorem”
applies).

We can now define a new matrix Q = W T W such
that the entire optimization problem is cast in terms
of Q and dot products between vectors xi. The Gram
matrix of the embedded points can be written as

gij = φ(xi) · φ(xj) = xT
i XT QXxj (5)

Define the “kernel matrix” K to be the matrix whose
entries are Kij = xi · xj . The elements of the Gram
matrix are then given by gij = kT

i Qkj , where ki is the
ith column of K, i.e ki = Xxi.

To express the regularization term ‖A‖2 using Q and
K we exploit the cyclic property of the trace operator
and note that

‖A‖2 = Tr(AAT ) = Tr(WXXT WT ) =

= Tr(W T WXXT ) = Tr(QK)



The important property of the above transformation is
that the optimization depends only on inner products
between the feature vectors xi, and thus we can use
kernel functions K(xi,xj) to obtain non-linear maps,
as is standard in kernel based algorithms (Schölkopf &
Smola, 2002).

In order to obtain a tractable SDP problem, we
assume as before that p = n. We thus have the fol-
lowing Kernel Pairwise SDE (KPSDE) optimization
problem:

KPSDE:

minQ,ξ,b

∑
ij sijd

2

ij + γTr(QK) + β
∑

ij ξij

s.t. sijd
2

ij ≤ sijbi + ξij ∀ij
Tr(KQK) ≤ 1
gij = kT

i Qkj

d2

ij = gii + gjj − 2gij

Q º 0

Since it may not be possible to find a non-zero para-
metric mapping such that the constraints are exactly
satisfied, we added slack variables ξ which allow con-
straints to be violated, and a term to the objective that
minimizes these violations, weighted by a positive fac-
tor β. Note that in principle the non-parametric case
may be non-feasible as well, so that slack variables
may also required there. However, the non-parametric
problem is much less constrained than the parametric
one, and in the experiments we performed, it always
had an exact solution with no slack violations.

Also note that we have dropped the constraint that
points be centered at the origin. This constraint can be
automatically satisfied by centering the input points xi

at the origin. This set would remain centered under
any linear transformation. Importantly, centering can
also be performed in the kernel space, as is done in
Kernel PCA (Schölkopf & Smola, 2002).

The objective of the KPSDE problem is linear in the
Q, ξ, b variables, and so are the constraints, so that the
problem constitutes a standard SDP.

To recover the projection matrix A from the matrix Q,
we need to perform a Singular Value Decomposition
of the matrix AT A = XT QX. Although this cannot
be done explicitly when X is high or infinite dimen-
sional (e.g., with RBF kernels), one can calculate low
dimensional projections via a procedure similar to Ker-
nel PCA. Here we use the procedure as described in
(Globerson & Roweis, 2006).

In the case of the RBF kernel, the parametric form of

the resulting low dimensional mapping is:

φ(x) =

n∑

i=1

αi exp(−‖xi − x‖/σ2) (6)

where αi ∈ <p are the low dimensional vectors ob-
tained from the SVD. In effect, the points αi are a set
of “basis embeddings”. A new point x is mapped to
a mixture of these points weighted by the proximity
of x to the points in xi. Note that xi itself will not
be mapped exactly to αi, but αi will always have the
largest weight in the mixture corresponding to xi.

5 Convex Duality and Laplacian

Eigenvalues

It is well known that convex optimization problems
have equivalent duals (Boyd & Vandenberghe, 2004).
It was shown in (Sun et al., 2006) that the convex
dual of SDE is the minimization of mixing time in a
continuous time Markov network. Here, using similar
duality transformations, it can be shown that the dual
of our PSDE problem is also an eigenvalue problem.
Consider the PSDE convex optimization problem, and
for simplicity assume there is only a single variable
bi = b, and sij = sji. The convex dual of this PSDE
can be shown to be:

min MaxEig[L(S ◦ (Y + 1))]
s.t. Tr[Y S] = 0 , Y ≥ 0

(7)

Where the operator L(G) is defined as L(G) =
diag(1>G)−G, and ◦ denotes element-wise multiplica-
tion. The operator MaxEig(A) returns the large eigen-
value of A. The constraint on Y is element-wise non-
negativity and not positive semidefiniteness. (Note
that while L(G) corresponds to the Laplacian for non-
negative matrices G, in this case the argument of L
may have negative entries, and thus it does not cor-
respond exactly to the conventional Laplacian.) The
zero trace constraint Tr[Y S] = 0 may be viewed as
a flow constraint where for each point xi the weight
on its similar points should equal that on its dissim-
ilar points. It remains an interesting problem to find
a natural graph flow, or mixing time problem, which
corresponds to the above optimization problem.

6 Efficient Optimization

Our current implementation uses the CSDP package
(Borchers, 1999) for solving SDPs. The PSDE op-
timization problem has potentially O(n2) constraints
and variables. The associated SDP may be too large
to solve using standard solvers. An effective solution
to this problem, previously employed in SDE, is to
first solve for a partial set of constraints, and then add
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Figure 2: Number of constraint violations as a function
of iteration number. One similarity and dissimilarity
constraints are added to each point, per iteration. The
count is over the un-optimized constraints.

a subset of the most violated constraints, until con-
vergence. While in the worst case, this strategy may
converge only after all the original constraints have
been added, this will only occur in pathological exam-
ples. Figure 2 shows the number of violated similar-
ity/dissimilarity constraints for the parametric embed-
ding KPSDE run on the NORB dataset (Section 8),
where n = 162.

In the parametric version of the algorithm, the con-
straints are no longer sparse (although they are low
rank), and thus the problem becomes computationally
costly. To reduce computational costs, we use a trick
similar to that in (Weinberger et al., 2005). Recall
that the projection matrix in the kernel case had the
form A = WX where the rows of X are the input
points. Instead of using all of X, we take only a sub-
set of r < n of its rows. Thus the SDP matrix Q in
this case has only size r×r and the problem is easier to
solve. Note that we still use all the other n− r points
for specifying the constraints. In the implementation
used here, we chose r random elements of X although
one could also potentially optimize this set.

7 Related Work

Metric embedding algorithms seek an embedding
which reproduces a given set of distances. The sim-
plest example of such an algorithm is Metric Multi-
dimensional Scaling (MDS) (Cox & Cox, 1984). Our
method diverges from that approach since the exact
values of distances are not known, only some con-
straints on their relative magnitudes. It is thus much
more closely related to non-metric MDS, which seeks
an embedding that preserves the ranking of distances
in a given distance matrix. Our approach differs from

non-metric MDS in several important respects. First,
it does not assume any distance matrix as input, but
rather only similarity relations. Second, our unfold-
ing objective is an effective method for obtaining low
dimensional solutions while maintaining convexity of
the optimization. Third, we offer both parametric and
non-parametric embeddings. This is an advantageous
property, since one can first uncover the ideal pair-
wise similarity manifold via a non-parametric method
(PSDE) and then proceed to find its functional form
using the parametric method (KPSDE) as in Sec. 8.

Another related line of work is that of graph visualiza-
tion or drawing (Kaufmann & Wagner, 2001). Given
a graph G the goal is to draw it in two or three dimen-
sions such that the resulting representation is read-

able or aesthetic. For example, one desired property
of such a visualization is that the number of crossing
edges is minimized, although this objective is hard to
optimize directly. Our approach is related to graph
drawing if one considers similar pairs as neighboring
edges on a graph.2 Indeed some graph drawing algo-
rithms (e.g. spring models) also rely on minimizing
the distance between neighboring vertices, but do not
do so in a constrained optimization framework as we
present here. Harel and Koren (2002) present a graph
drawing method that is related to ours in that it first
embeds vertices into a high dimensional space and then
uses PCA to obtain a low dimensional embedding. It
will be interesting study our algorithm in the context
of graph drawing, and to obtain theoretical results re-
garding the readability of its embeddings.

The current method uses some ideas from recent works
by Weinberger and Saul. Most importantly, it uses
an objective similar to the maximum variance unfold-
ing objective of the SDE method (Weinberger & Saul,
2004), but under a non-metric setting. Since the con-
straints here do not act as rigid rods as in SDE, we add
a norm constraint on the embedding, so that it cannot
expand to infinity. Our PKSDE algorithm is also re-
lated to recent metric learning methods for supervised
classification (Weinberger et al., 2006; Shalev-Shwartz
et al., 2004; Globerson & Roweis, 2006) which search
for a metric under which vectors in the same class are
mapped to nearby points. PKSDE differs from these
in the structure of its constraints and objective, which
are designed to obtain low dimensional embeddings for
general pairwise similarity input. Brand (2003) also
studies a kernel based embedding algorithm, but in
the context of spectral clustering.

Finally, a recent work (Hadsell et al., 2006) addressed a
setting similar to ours, where one is given pairwise sim-

2Since we allow for dissimilar pairs (sij = −1) as well
as unrelated pairs (sij = 0) our input is more general than
a graph adjacency matrix



Figure 3: PSDE embedding of star and grid structures.
The left column shows the original points (which the algo-
rithm does not have access to). The right columns show the
two dimensional embeddings recovered by the PSDE algo-
rithm, based only on pairwise binary similarities. Different
columns correspond to a different choice of the number of
nearest neighbors used in constructing the similarity ma-
trix (k = 2, 3, 4 from left to right).

ilarity as input, and seeks a low dimensional map pre-
serving it. The algorithm in (Hadsell et al., 2006) used
a convolutional network as the functional map, with a
single objective which combines maximizing dissimi-
lar distances and minimizing similar ones. Unlike our
method, theirs does not impose any constraints, and
thus the solution may violate a large set of the con-
straints in an uncontrolled manner. Furthermore, the
optimization problem is non-convex and may be stuck
in local minima. An advantage of (Hadsell et al., 2006)
is that it works in a low dimensional space directly, and
is thus likely to be less computationally intensive than
our method, especially for large datasets.

8 Experimental Evaluation

The PSDE algorithm may be used to uncover under-
lying structure given only pairwise relations. We first
illustrate this on simple star and grid structures, shown
in Figure 3. The input to the algorithm is a similar-
ity matrix generated by considering all the k nearest
neighbors of a point xi to be similar to xi, and all
other points considered dissimilar (here we experiment
with k = 2, 3, 4). The algorithm does not have access
to the geometric positions of the original points. The
resulting embeddings are shown in the right columns
of Figure 3. It can be seen that the similarity mea-
sure of the original structure is well preserved by the
recovered embedding, although the exact coordinates
are not. This is to be expected, since the algorithm
does not have any access to this representation. Also,
different values of k, although they generate different
similarity matrices, give qualitatively similar embed-
dings.

8.1 Image Embedding

Embedding algorithms are commonly used to study
the manifold structure of image sets (Roweis & Saul,
2000; Tenenbaum et al., 2000). This is a challenging
task since the standard Euclidean distance between
pixel maps is usually not very indicative of semantic
similarity between images. For example a translated
image may be very different from the original, if one
only considers pixel values. Here we apply our pair-
wise embedding method to the NORB dataset (LeCun
et al., 2004), which has been used in other recent works
on embedding (e.g. the method of Hadsell et al. (2006)
mentioned in Section 7).

The small NORB dataset, which we use here, consists
of images of a given object (e.g., an airplane) taken
at different azimuths (0, 20, . . . , 340 degrees), different
elevations (30, 35, . . . , 70 degrees) and four illumina-
tion conditions. The raw images are shown in Figure
4. Here we are interested in recovering the manifold
structure related to azimuth and elevation. Intuitively,
such a manifold may be represented by a cylinder. We
wish to obtain this representation from pairwise simi-
larity data alone.

For the experiment we used images of an airplane
taken at all azimuths and elevations and at one il-
lumination condition. This resulted in a total of 162
images. The pairwise similarity presented to the em-
bedding algorithm was sij = +1 if two images differed
by at most one level of azimuth and elevation, and
sij = −1 otherwise. We first ran the non-parametric
embedding algorithm (Section 3), to see what manifold
structure is implied by the similarity data alone. The
result, shown in Figure 8.1, is a nearly perfect cylinder
which captures the expected azimuth/elevation struc-
ture.

The non-parametric result implies that the given sim-
ilarity data may be represented without distortion in
three dimensions. It is thus natural to apply KPSDE
to obtain a parametric version of this embedding. We
used KPSDE with an RBF kernel on 142 images, set-
ting aside 20 points to test out of sample behavior.
We also used a subset of r = 100 random data points
to speed up the optimization, as explained in Section
6. The parameters σ, γ, β where chosen to maximize
the weight of the first three eigenvalues of the Gram
matrix. At the optimum, these three eigenvalues cap-
tured 94% of the sum of all 100 eigenvalues. The re-
sults for the training data and out of sample points are
shown in Figure 6. It can be seen that the embedding
also captures the azimuth/elevation parameterization
of the manifold, and that out of sample points are
mapped to areas in the map corresponding to their
azimuth and elevation.



Figure 5: Non-parametric embedding (PSDE).
Above: Points representing the embedded images
in three dimensions. Different colors correspond to
different elevations, and marker sizes correspond
to different azimuths (smallest marker is azimuth
0 and largest is azimuth 340).
Left: the corresponding images embedded in two
dimensions using the coordinates (x

√
z, y

√
z).

Figure 4: NORB airplane image data. Images with
similar azimuth and elevation (neighbors in the rect-
angular layout above. The rightmost and leftmost
columns also have a similar azimuth) were considered
similar, and all other dissimilar.

9 Discussion & Conclusions

We have presented a novel method for obtaining low
dimensional embeddings of objects based only on pair-
wise similarity data. Our algorithm employs a variant
of semidefinite embedding (Weinberger & Saul, 2004)
to generate a convex semidefinite program whose solu-
tion gives an embedding in a high dimensional space,
which can then be projected to a low dimensional one.
One advantage of this approach is that it may find an
embedding which satisfies the set of constraints, even if
such an embedding does not exist in a low dimensional

space. This can aid in uncovering the dimensionality
of the underlying manifold, and estimating the loss
incurred in projecting it to low dimensional spaces.

The current formalism uses a binary measure of simi-
larity. However in some cases one may have access to
more complex relations such as an ordered similarity
measure. For instance, our input may be in the fol-
lowing form: point xi is more similar to xj than to
xk, but also more similar to xk than to a fourth point
xl (i.e. xj ≤i xk ≤i xl). The PSDE method may be
extended to reflect such relations. We are currently
studying this extension and its applications.

Finally, we also presented a parametric method, which
optimizes the same objective and constraints as the
parametric one, but yields a functional map, which
can be used for out of sample points. The two methods
can be used jointly to first find a dimension where the
given similarity relations can be faithfully represented
when the mapping is not restricted, and then seek a
functional form of this map. We note that our kernel
extension could in principle be applied to other con-
straint based embedding algorithms such as the origi-
nal SDE method, thus allowing them to generalize to
out of sample points.

The generality of these new methods, and their re-
liance on a very minimal form of input, should make
them applicable to a wide range of fields, from model-
ing protein-protein interactions, to mapping of social



Figure 6: Parametric embedding (KPSDE), using an
RBF kernel. Two projections of the 3D embedding
are shown. The top panel shows a projection that
illustrates the azimuth mapping. Arrows are drawn at
each embedding point with a direction corresponding
to the azimuth of the original image. For images in the
test set, the base of the arrow is marked with a circle.
The bottom panel shows a projection that illustrates
the elevation mapping. Different elevations correspond
to different colors and shape. Points in the test set are
indicated by a marker which is larger than the training
points.

networks.
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