Lecture 3:

Proving the Kraft-McMillan Inequalities

September 18, 2006

- Lossless Data Compression

Shannon's Noiseless Coding Theorem
Lower limit on lossless compression is the "source entropy".
Algorithms: Huffman Coding, Arithmetic Coding

- Transmission over Noisy Channels

Shannon's Noisy Coding Theorem
Upper limit on error-free transmission rate is "channel capacity".
Algorithms: Linear Codes, Low Density Parity Check Codes

- (*)Lossy Compression

Shannon's Rate-Distortion Theorem
Algorithms: mp3,jpeg,mpeg

- A stochastic source emits a sequence of symbols (from alphabet \mathcal{A}) $X=X_{1}, X_{2}, \ldots, X_{N}$ with probability $p(X)$.
- Our encoder (code) C converts this into an (bitstring) encoding Z.
- We assume (for now) that the decoder can see Z exactly (noiseless channel), that we are required to reconstruct X exactly (lossless compression) and that we are using a symbol code, (i.e. we encode each symbol X_{i} independently and concatenate their encodings).
- We require the code to be uniquely decodable (UD), and we saw that for any UD code there is always an instantaneously decodable (ID) code with the same codeword lengths. These lengths must satisfy the Kraft-McMillan inequality: $\sum_{i} 2^{-l_{i}} \leq 1$.
- We will measure the quality of our code by the average length (under $p(X)$) of the encoding Z, compared to the length of X.
- We can prove both Kraft's and McMillan's inequality by proving that for any set of lengths, l_{1}, \ldots, l_{I}, for binary codewords:
A) If $\sum_{i=1}^{I} 1 / 2^{l_{i}} \leq 1$, we can construct an instantaneous code with codewords having these lengths.
B) If $\sum_{i=1}^{I} 1 / 2^{l_{i}}>1$, there is no uniquely decodable code with codewords having these lengths.
- (A) is half of Kraft's inequality.
(B) is half of McMillan's inequality.
- Using the fact that instantaneous codes are uniquely decodable, (A) gives the other half of McMillan's inequality, and (B) gives the other half of Kraft's inequality.
- To do this, we'll introduce a helpful way of thinking about codes as...trees!
- We can extend the tree by filling in the subtree underneath every actual codeword, down to the depth of the longest codeword.
- Each codeword then corresponds to either a leaf or a subtree.
- Previous tree extended, with each codeword's leaf or subtree circled:

- Short codewords occupy more of the tree. For a binary code, the fraction of leaves taken by a codeword of length l is $1 / 2^{l}$.

Visualizing Prefix-Free Codes as Trees

- We can view codewords of an instantaneous (prefix-free) code as leaves of a tree.
- The root represents the null string; each level corresponds to adding another code symbol.
- Here is the tree for a code with codewords $0,11,100,101$:

Constructing Instantaneous Codes

- Suppose that Kraft's Inequality holds:

$$
\sum_{i=1}^{I} \frac{1}{2^{l_{i}}} \leq 1
$$

- Order the lengths so $l_{1} \leq \cdots \leq l_{I}$.
- Q: In the binary tree with depth l_{I}, how can we allocate subtrees to codewords with these lengths?
- A: We go from shortest to longest, $i=1, \ldots, I$:

1) Pick a node at depth l_{i} that isn't in a subtree previously used, and let the code for codeword i be the one at that node.
2) Mark all nodes in the subtree headed by the node just picked as being used, and not available to be picked later.

- Let's look at an example...
- Let the lengths of the codewords be $\{1,2,3,3\}$.
- First check: $2^{-1}+2^{-2}+2^{-3}+2^{-3} \leq 1$.
- Initialize the tree (level 0).

- Let the lengths of the codewords be $\{1,2,3,3\}$.
- Pick (arbitrarily) an unmarked node at level 2 to use for codeword of length 2; mark the subtree below it.

Building an Instantaneous Code (1)

- Let the lengths of the codewords be $\{1,2,3,3\}$.
- Pick (arbitrarily) an unmarked node at level 1 to use for codeword of length 1 ; mark the subtree below it.

- Let the lengths of the codewords be $\{1,2,3,3\}$.
- Our final code can be read from the leaf nodes: $\{1,00,010,011\}$

Construction Will Always Be Possible

- Q: Will there always be a node available in step (1) above?
- If Kraft's inequality holds, we will always be able to do this.
- To begin, there are $2^{l_{b}}$ nodes at depth l_{b}.
- When we pick a node at depth l_{a}, the number of nodes that become unavailable at depth l_{b} (assumed not less than l_{a}) is $2^{l_{b}-l_{a}}$.
- When we need to pick a node at depth l_{j}, after having picked earlier nodes at depths l_{i} (with $i<j$ and $l_{i} \leq l_{j}$), the number of nodes left to pick from will be an integer equal to

$$
2^{l_{j}}-\sum_{i=1}^{j-1} 2^{l_{j}-l_{i}}=2^{l_{j}}\left[1-\sum_{i=1}^{j-1} \frac{1}{2^{l_{i}}}\right]>0
$$

Since $\sum_{i=1}^{j-1} 1 / 2^{l_{i}}<\sum_{i=1}^{I} 1 / 2^{l_{i}} \leq 1$, by assumption.

- This proves we can always construct an ID code if $\sum_{i} 2^{-l_{i}} \leq 1$.
- Let $l_{1} \leq \cdots \leq l_{I}$ be the codeword lengths. Define $K=\sum_{i=1}^{I} \frac{1}{2^{\lambda_{i}}}$.
- For any positive integer n, we can sum over all possible combinations of values for i_{1}, \ldots, i_{n} in $\{1, \ldots, I\}$ to get K^{n}.

$$
K^{n}=\sum_{i_{1}, \ldots, i_{n}} \frac{1}{2^{l_{i_{1}}}} \times \cdots \times \frac{1}{2^{l_{i_{n}}}}
$$

- We rewrite this in terms of possible values for $j=l_{i_{1}}+\cdots+l_{i_{n}}$:

$$
K^{n}=\sum_{j=1}^{n l_{I}} \frac{N_{j, n}}{2^{j}}
$$

$N_{j, n}$ is the \# of sequences of n codewords with total length j.

- If the code is uniquely decodable, $N_{j, n} \leq 2^{j}$, so $K^{n} \leq n l_{I}$, which for big enough n is possible only if $K \leq 1$.
- This proves that any UD code must satisfy $\sum_{i} 2^{-l_{i}} \leq 1$.
- The Kraft-McMillan inequalities imply that to make some codewords shorter, we will have to make others longer.
- Example: The obvious binary encoding for eight symbols uses codewords that are all three bits long. This code is instantaneous, and satisfies the Kraft inequality, since:

$$
\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}=1
$$

- Suppose we want to encode the first symbol using only two bits. We'll have to make some other codewords longer - eg, we can encode two of the other symbols in four bits, and the remaining five symbols in three bits, since

$$
\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{4}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}=1
$$

How should we choose among the possible codes?

- We'd like to choose a code that uses short codewords for common symbols and long ones for rare symbols.
- To formalize this, we need to assign each symbol in the source alphabet a probability.
- Symbols a_{1}, \ldots, a_{I} will have probabilities written as p_{1}, \ldots, p_{I}. We assume that these probabilities don't change with time.
- We also assume that symbols in the source sequence,
$X_{1}, X_{2}, \ldots, X_{N}$, are independent:

$$
\begin{aligned}
& P\left(X_{1}=a_{i_{1}}, X_{2}=a_{i_{2}}, \ldots, X_{n}=a_{i_{N}}\right) \\
& \quad=\prod_{n} P\left(X_{n}=a_{i_{n}}\right)=p_{i_{1}} p_{i_{2}} \cdots p_{i_{N}}
\end{aligned}
$$

- These assumptions are really too restrictive in practice, but we'll ignore that for now.
- We say a code is optimal for a given source (with given symbol probabilities) if its average length is at least as small as that of any other code. (There can be many optimal codes for the same source, all with the same average length.)
- The Kraft-McMillan inequalities imply that if there is an optimal code, there is also an optimal instantaneous code. More generally, for any uniquely decodable code with average length L, there is an instantaneous code with the same average length.
- Questions: Can we figure out the codeword lengths of an optimal code starting from the symbol probabilities? i.e. can we solve:

$$
\min _{\left\{l_{i}\right\}} \sum_{i} p_{i} l_{i} \quad \text { subject to } \sum_{i} 2^{-l_{i}} \leq 1
$$

Can we find such an optimal code, and use it in practice?

- Answers: next class!

