CSC210 Information Theory Sam Poweig	CHANNELS & CAPACITY 2
CSCS10 – Information Theory Sam Rowels	 Channels: Input/Output alphabets; Transition Probabilities Memoryless (Independent), Synchronized Examples: BSC, BEC, Z
Lecture 24:	• Capacity == maximal average mutual information between input symbol and output symbol that can be obtained with any choice of input distribution. (Achieved when the channel is driven by its "resonant input distribution".)
SUMMARY/REVIEW	 The capacity is the rate at which data can be sent through the channel with vanishingly small probability of error.
December 4, 2006	
ENTROPY & MUTUAL INFORMATION 1	$\frac{\text{CODES, MESSAGES \& RATES}}{\bullet N \text{ identical useages of a channel form the}}$
 The mutual information between the input and the output: I(X; Y) = H(X) + H(Y) - H(X, Y) Mutual information is meant to represent the amount of information that is being communicated from sender to receiver. 	 Nth extension of the channel. A code is a subset of all possible length N sequences of input symbols. The elements of the subset are the codewords. If we use 2^K codewords, we can create a mapping between K-bit messages and the N-bit codewords.
• Joint and Conditional Entropies: $H(X, Y) = \sum_{i=1}^{r} \sum_{j=1}^{s} p(x = a_i, y = b_j) \log(1/p(x = a_i, y = b_j))$ • Cross-Entropy (Kullback-Leibler Divergence) $KL[p q] = \sum_{i} p_i \log p_i/q_i; I(X; Y) = KL[p(x, y) p(x)p(y)]$	 The rate of a code R = K/N is the fractional effective speed at which message bits get transmitted across the channel. Minimum distance, maximum error tolerance.

Encoding & Decoding

- \bullet Encoding: map from K bits to one of 2^K codewords.
- Decoding: MAP, ML, minimum-distance
- When the sender transmits a codeword in C, the receiver might (in general) see any output block, $b_{j_1} \cdots b_{j_N} \in \mathcal{A}_Y^N$.

The receiver can try to *decode* this output in order to recover the codeword that was sent.

The optimal method of decoding is to choose a codeword, $w \in \mathcal{C}$, which maximizes

$$P(w \mid b_{j_1} \cdots b_{j_N}) = \frac{P(w) P(b_{j_1} \cdots b_{j_N} \mid w)}{P(b_{j_1} \cdots b_{j_N})}$$

In case of a tie, we pick one of the best w arbitrarily. If P(w) is the same for all $w \in \mathcal{C}$, this scheme is equivalent to choosing w to maximize the "likelihood", $P(b_{j_1} \cdots b_{j_N} | w)$.

Shannon's Noisy Coding Theorem

5

• Shannon's noisy coding theorem states that:

For any channel with capacity C, any desired error probability, $\epsilon>0$, and any transmission rate, R< C, there exists a code with some length N having rate at least R such that the probability of error when decoding this code by maximum likelihood is less than $\epsilon.$

- In other words: We can transmit at a rate arbitrarily close to the channel capacity with arbitrarily small probability of error.
- The converse is also true: We *cannot* transmit with arbitrarily small error probability at a rate greater than the channel capacity.
- We can always chose to transmit beyond the capacity, but not with vanishly small error our best possible error rate will still be finite.
- Proof by random choice of codes.

- Problems with large block lengths.
- Using aritmetic mod 2, we could represent a code using either a set of basis functions or a set of constraint (check) equations, represented a generator matrix G or a parity check matrix H.
- Every linear combination basis vectors is a valid codeword & all valid codewords are spanned by the basis; similarly all valid codewords satisfy every check equation & any bitstring which satisfies all equations is a valid codeword.
- The rows of the generator matrix form a basis for the subspace of valid codes; we could encode a source message s into its transmission t by simple matrix multiplication: t = sG.
- The rows of the parity check matrix H form a basis for the complement of the code subspace and represent check equations that must be satisfied by every valid codeword.
 - HAMMING CODES
- For linear codes, minimum distance = minimum codeword weight.
- The maximum number of errors we can guarantee to correct is the half the minimum distance (minus one).
- Perfect Packing, Sphere Packing Bound, Gilbert Varshamov Bound
- For each positive integer c, there is a binary Hamming code of length $N = 2^c 1$ and dimension K = N c. These codes all have minimum distance 3, and hence can correct any single error.
- They are also perfect, since

 $2^{N}/(1+N) = 2^{2^{c}-1}/(1+2^{c}-1) = 2^{2^{c}-1-c} = 2^{K}$

- which is the number of codewords.
- Hamming Codes have a very simple decoding procedure
- Syndrome Decoding for general linear codes

6

- -all its columns are codewords of C_2
- Product Codes can correct bursts of errors 0 1 ? 0 0 1 0 0 0 ? ? ? ? ? ? 0 0 0 0 1 0 0 0 1 ? 0 0
- Erasure Channels packets get lost, not corrupted
- Reed-Solomon codes are based on polynomial interpolation

- have to reproduce the original exactly.
- JPEG Lossy Image Compression.

