
CSC310 – Information Theory Sam Roweis

Lecture 20:

Low Density Parity Check Codes

November 20, 2006

Reminder: Hamming Codes 1

• Hamming Codes are perfectly packed linear codes which are
guaranteed to correct any single-bit transmission error.

• For every integer c ≥ 2, there is a Hamming code which encodes
messages of K = 2c − c − 1 bits into transmissions of length
N = 2c − 1. We have seen the [3,1] Hamming code (aka the
repetition code) and the [7,4] code; the next code is [15,11], etc.

• To make a Hamming code of size N , we construct a K × N parity
check matrix H whose N columns are the K − bit binary
expansions of the integers from 1 to N.

• To encode a source message s, we compute the generator matrix G
from H , and transmit t = sG.

• To decode, we use the clever trick called syndrome decoding.

Syndrome Decoding for Hamming Codes 2

• Consider the original (non-systematic) parity-check matrix:

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





• Suppose t is sent, but r = t + n is received (n is channel noise).

• The receiver can compute the syndrome for r:

z = rHT = (t + n)HT = tHT + nHT = nHT

Note that tHT = ~0 since t is a codeword.

• If there were no errors, n = ~0, so z = ~0.

• If there is one error, in position i, then nHT will be the ith column
of H — which contains the binary representation of the number i!

• So to decode, we compute the syndrome, and if it is non-zero, we
flip the bit it identifies. Easy!

Syndrome Decoding by Table Lookup 3

• For any linear code with parity-check matrix H , we start decoding
by computing the syndrome z = rHT , from the received block r.

• If we received r = t + n, where t is the transmitted codeword and
n is the noise pattern, then z = nHT (since tHT = ~0).

• Nearest-neighbor decoding involves finding a noise pattern, n, that
produces the observed syndrome z (and which has the smallest
possible weight). Then we decode r as r− n.

• To do this, we build a table indexed by the syndrome z that gives
the noise pattern n of minimum weight for each syndrome.

• Initialize all entries in the table to be empty. Then consider the
non-zero noise patterns, n, in some order of non-decreasing weight.
For each n, we compute the syndrome, z = nHT , and store n in
the entry indexed by z, provided this entry is currently empty.
Stop when the table has no empty entries left to fill.



Example: Syndrome Decoding for the [5, 2] Code 4

• Recall the [5, 2] code with this parity-check matrix:




1 1 0 0 0
0 0 1 1 0
1 0 1 0 1





• Here is a syndrome decoding table for this code:
z n

001 00001
010 00010
011 00100
100 01000
101 10000
110 10100
111 01100

The last two entries are not unique, ie there are multiple noise
vectors of weight 2 corresponding to each of those syndromes.

Decoding in General 5

• Syndrome decoding for general linear codes (other than Hamming
codes) requires building a table of all possible syndromes and doing
reverse lookup to find the best codeword.

• Problem: The size of the table is exponential in the number of
check bits — it has 2N−K − 1 entries for an [N,K] code.

•Maximum Likelihood/Nearest Neighbour decoding is even more
expensive in general, and requires solving a linear system.

• For example, in an [N,K] code, decoding for the BEC requires
solving a system of N−K equations and will take time proportional
to (N−K)3 using the most obvious algorithm. This time can be
reduced somewhat by using cleverer algorithms, but for values of
N−K in the thousands, the time could still be quite substantial.

• Can we find a class of codes which is both compact to represent,
easy to encode and easy to decode?

What a Good Linear Code Looks Like 6

•We don’t want our linear codes to have very low-weight code
words, because this means they have very small minimum distance.

• So the generator matrix for a good code should not be sparse —
each row should have many 1s, so that encoding a message with
only a few 1s still produces a codeword that has many 1s.

• The decoder’s perspective: To be confident of decoding correctly,
getting even one bit wrong should produce a large change in the
codeword, which will be noticeable (unless we’re very unlucky).

• Thus we should avoid sparse generator matrices. But can we use a
sparse parity-check matrix? Doing so isn’t quite optimal, but such
“Low Density Parity Check” (LDPC) codes can be very good.

•The big advantage of LDPC codes:

There is a computationally feasible way of decoding them that is
very good, though not exactly optimal.

Building Low Density Parity Check Codes 7

• LDPC codes are built using sparse random parity check matrices.

•We can construct LDPC codes randomly, in various ways.
One way: to make an [N,K] code, randomly generate columns of
H with exactly three 1s in them.

• For better results, equalize the number
of 1s in each row (as much as possi-
ble) by randomly picking the position
of the three 1s in the next column from
among rows that don’t already have
3N/(N−K) 1s in them.

• If each row (as well as each column)
has exactly the same number of 1s, the
code is called a regular Gallager code,
after its inventor (1961).



Example: A [50, 25] LDPC Code 8

Here’s the parity-check matrix for a small LDPC code (three 1s in each
column, six in each row and a systematic generator matrix obtained
from the parity-check matrix (with columns re-ordered):

00110000010100000000000000100000000000000000001000

00000000000000000000101000000100001001000000010000

00101010000000000001000100000100000000000000000000

00000101000000001000000000000000000000110010000000

00000000010000000001000000000001100000000001000010

00000100000010000000001000000000000100000000001010

00000000000101000100000000000000010010000010000000

01000010000100000010000000000000001000000000000001

00000000000000011010000000001000000010000100000000

01000000000010000000000011001000000000001000000000

00000000001010100000000000000000000000011000010000

00000000000000000010000000010000100000000000001101

00010000000000010000000110010000000001000000000000

10000001000000010000100000000101000000000000000000

00010010001000000000000000100000010100000000000000

00000001000001000000010000000000100000000011000000

10000000010000100000000000001000000000000000000101

00000000000000000100010001000010000010000001000000

00101000100000000100000000000000010000100000000000

10000000001000000000000000010000001001000000000100

00000000100000000000001100000010000000110000000000

00000100000000001001100000100000000000000100000000

00000000100001100000000001000000000100000000100000

01000000000000000000010010000000000000001100100000

00001000000000000000000000000011000000000000110010

10000000000000000000000000110000011111011101001010

01000000000000000000000001001010101001101110111000

00100000000000000000000000111001100110000100111000

00010000000000000000000000000101101011111110010010

00001000000000000000000001010011000110001000100001

00000100000000000000000000111000001111010001011011

00000010000000000000000001111010111111010001011011

00000001000000000000000001011011011011100010011011

00000000100000000000000000100101000110011001000100

00000000010000000000000001001011001111010000110000

00000000001000000000000001000010101001100110100011

00000000000100000000000000010000100000000000001101

00000000000010000000000000000011000000000000110010

00000000000001000000000001010010100000100110100111

00000000000000100000000000001001100110101110000011

00000000000000010000000000111101100100011101001001

00000000000000001000000001000001001101010101010000

00000000000000000100000001010010100110001001100011

00000000000000000010000000111011100000000110001011

00000000000000000001000000110001001100110011001100

00000000000000000000100001110010000010101000101000

00000000000000000000010000000011001111010100010000

00000000000000000000001000111110100010110110000000

00000000000000000000000100110010000011101011111100

00000000000000000000000011001110100000101110101000

Decoding LDPC Codes 9

• To encode a message with an LDPC, we just multiply it by the
generator matrix. But how do we decode?

• The optimal method is to do maximum likelihood decoding,
which often reduces to nearest neighbour decoding,
i.e. picking the codeword nearest to what was received.

• But both maximum likelihood and nearest neighbour
are computationally infeasible in general

• The reason LDPC codes are interesting is that the
sparseness of their parity-check matrices allows for
an approximate (good, but not optimal) decoding
method that works by propagating messages

through a graph.

Graphical Representation of a Code 10

•We can represent a code by a graph:

– Empty circles represent true bits of the original codeword.

– Black circles represent received bits (message + check).

– Black squares represent parity check equations.

Here’s a fragment of such a graph:

Notice that each codeword bit connects to three parity checks —
corresponding to the three 1s in each column of H .
Each parity check connects to six codeword bits.

Our task: Fill in the empty circles.

A Larger Example 11

Here’s the graph for a [16,12] code.

This is called the Tanner Graph for the code. The nodes at the top are
the variable nodes and the nodes at the bottom are the check nodes.



Decoding LDPC codes over the BEC 12

• Let’s consider decoding a LDPC code when the transmission uses a
Binary Erasure Channel (BEC).

• Reminder: for the BEC, the input alphabet is {0, 1}, but the
output alphabet is {0, ?, 1}. The “?” output represents an
“erasure” (corruption), in which the transmitted symbol is lost, but
the receiver knows it was lost. (eg error correcting memory)

• An erasure happens with probability f ; otherwise, the symbol is
received correctly.

0

1

0

11−f

1−f
?f

f

Decoding by Passing Messages 13

• If the correct value for a bit in a codeword is known — either
because it was received correctly through the channel, or because
its value has been determined in the decoding process — this bit in
the codeword sends a message to all parity checks of which it is a
part, telling these parity checks what its value is.

• A parity check waits until it has received messages from all but one
of the bits that participate in the parity check, at which point it can
send a message to the remaining bit, telling it that its value must
be the value needed for the parity check to come out correctly
(given the values of the other bits, which are now known).

• This process of exchanging messages continues until no further
messages can be sent. At this point, the codeword bits may all be
determined, in which case decoding was successful, or some
codeword bits may still be unknown, in which case decoding was
not completely successful (though some of the erased bits may have
been filled in with their correct values).

Decoding LDPC codes over the BSC 14

• A harder problem is decoding a LDPC code when the transmission
uses a Binary Symmetric Channel (BSC), since there are no bits of
the codeword we are certain about.

• For the BSC, the input and output alphabets are both {0, 1}.

•With probability f , the symbol received is different from the symbol
transmitted. With probability 1 − f , the symbol is received
correctly.

0

1

0

1
f
f

1−f

1−f

• In this case, we can still do iterative decoding by passing messages,
but the messages have to represent soft decisions or probabilities

rather than hard decisions as before.

Decoding by Propagating Probabilities 15

•We can’t be absolutely sure of the codeword bits, but we can keep
track of the odds in favour of 1 over 0 (the ratio of the probability
of 1 over the probability of 0).

• Each black node will send each codeword bit it connects to a
message giving its idea of what the odds for 1 over 0 should be for
that bit.

• All the messages a codeword receives are multiplied to give the
current idea of what the odds are for that bit — used to guess the
codeword once these odds have stabilized.

• But first, we iterate: Each codeword bit sends each parity check it
connects to a message with its current odds, which the parity check
node uses to update its messages to other codeword bits. Messages
propagate until the odds have stabilized.



Details of the Messages 16

•Received data bit to codeword bit: For a BSC, odds sent are
(1−f )/f if the received data is 1, f/(1−f ) if the received data is
0. (For a BEC, the odds are either 0, 1, or ∞, which produces the
simple message passing algorithm used in the last assignment.)

•Parity check to codeword bit: Message is the probability of
the parity check being satisfied if that bit is 1, divided by the
probability if that bit is 0. These probabilities are calculated based
on that parity check’s idea of the odds for the other bits in the
parity check being 1 versus 0.

•Codeword bit to a parity check: Message is the odds of the bit
being 1 versus 0, based on the received data, and on the messages
from the other parity checks the codeword bit is involved in.

Avoiding Double-Counting Information 17

•Messages send between codeword bits and parity checks exclude
information obtained from the node the message is being sent to.
This avoids undesirable “double-counting” of information when a
message comes back from that node.

•But: This works perfectly only if the graph is a tree. If there are
cycles in the graph, information can return to its source indirectly.

• This is why probability propagation is only an approximate

decoding method. It works well up to a point, but doesn’t have as
low an error rate as nearest-neighbor (maximum likelihood)
decoding would achieve.

Performance of LDPC Codes 18

• Rate 1/2 LDPC codes with three bits in each column of H , with
varying codeword lengths, tested using a BSC with varying error
probability, f , and hence capacity, C = 1−H2(f ).

• Here are the block error rates for three such codes, estimated from
1000 simulated messages:
f C [100, 50] [1000, 500] [10000, 5000]

0.02 0.86 0.000 0.000 0.000
0.03 0.81 0.012 0.000 0.000
0.04 0.76 0.059 0.000 0.000
0.05 0.71 0.108 0.000 0.000
0.06 0.67 0.213 0.005 0.000
0.07 0.63 0.327 0.104 0.000
0.08 0.60 0.482 0.404 0.125

Tests were done with software available from Radford Neal’s web page,
http://www.cs.utoronto.ca/∼radford/.

History of LDPC and Related Codes 19

• – Gallager, LDPC codes — 1961.

True merits not realized? Computers too slow? Largely ignored
and forgotten.

– Berrou, et al, TURBO codes — 1993.

Surprisingly good codes, practically decodable, but not really
understood.

– MacKay and Neal — 1995.

Reinvent LDPC codes, slightly improved. Show they’re almost as
good as TURBO codes. Decoding algorithm related to other
probabilistic inference methods.

– Many (Richardson, Frey, etc.) — ongoing.

Further improvements in LDPC codes, relationship to TURBO
codes, theory of why it all works.


