CSC210 Information Theorem	GENERATOR AND PARITY CHECK MATRICES 2
LECTURE 16:	 Using aritmetic mod 2, we could represent a code using either a set of basis functions or a set of constraint (check) equations, represented a generator matrix G or a parity check matrix H. Every linear combination of basis vectors is a valid codeword and al valid codewords are spanned by the basis. Similarly all valid codewords satisfy every check equation and any bitstring which
Equivalent Codes & Systematic Forms	 The rows of the generator matrix form a basis for the subspace of valid codes; we could encode a source message s into its transmission t by simple matrix multiplication: t = sG.
November 6, 2006	• The rows of the parity check matrix H form a basis for the complement of the code subspace and represent check equations that must be satisfied by every valid codeword. That is, all codewords \mathbf{v} are orthogonal to all rows of H (lie in the null space of H), meaning that $\mathbf{v}H^T = \vec{0}$.
Potential Problems with Large Blocks 1	Example: Generator Matrix for the [5,2] Code
 Recall that Shannon's second theorem tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity. However, this might require us to encode our message in very long blocks, which could potentially cause some serious practical problems with storage/retrieval of codewords. For blocks of K bits, our code will have 2^K codewords, which is a huge number to store, index, etc. For many real world situations, the block sizes used are thousands of bits, e.g. K = 1024 or K = 4096. Last class, we saw how to solve all these problems by representing 	• Recall the linear [5,2] code from lecture 13 (page 12): $\begin{cases} 00000, 00111, 11001, 11110 \end{cases}$ We know it is linear since all sums of codewords are also codewords 00111 + 11001 = 11110 $00111 + 11110 = 11001$ $11001 + 11110 = 00111$ • Here's a generator matrix for this [5,2] code: $\begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$ • Encoding the message block (1, 1) using the generator matrix above $\mathbf{s}G = \mathbf{t}$
 the codes <i>mathematically</i> and using the magic of <i>linear algebra</i>. The valid codewords formed a subspace in the vector space of the finite field Z₂^N. 	$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \end{bmatrix}$

Example: Parity Check Matrix for the $[5,2]$ Code 4	Manipulating the Parity-Check Matrix 6
• Here is one parity-check matrix for the [5, 2] code: $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ • We see that 11001 is a codeword as follows: $\begin{bmatrix} 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ • But 10011 isn't a codeword, since $\begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$	 There are usually many parity-check matrices for a given code. We can get one such matrix from another using the following "elementary row operations", which don't alter the solutions to the equations the parity-check matrix represents: Swapping two rows. Adding a row to a different row. Ex: This parity-check matrix for the [5, 2] code: 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 can be transformed into this alternative: 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1
Repetition Codes and Single Parity-Check Codes 5	Manipulating the Generator Matrix 7

 \bullet An [N,1] repetition code has the following generator matrix:

 $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ for N=4

Here is a parity-check matrix for this code:

- $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
- One generator matrix for the [N, N-1] single parity-check code:
 - $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ for N=4

Here is the parity-check matrix for this code:

[1 1 1 1]

MANIPULATING THE GENERATOR MATRIX

• We can apply the same elementary row operations to a generator matrix for a code, in order to produce another generator matrix, since these operations just convert one set of basis vectors to another.

Example: Here is a generator matrix for the [5, 2] code we have been looking at:

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Here is another generator matrix, found by adding the first row to the second:

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Note: These manipulations leave the set of codewords unchanged, but they *don't* leave the way we encode messages by computing $\mathbf{t} = \mathbf{s}G$ unchanged!

Equivalent Codes

- Two codes are said to be *equivalent* if the codewords of one are just the codewords of the other with the order of symbols permuted.
- Permuting the order of the columns of a generator matrix will produce a generator matrix for an equivalent code, and similarly for a parity-check matrix.
- Example: Here is a generator matrix for the [5,2] code we have been looking at:

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

• We can get an equivalent code using the following generator matrix obtained by moving the last column to the middle:

 $\left[\begin{array}{rrrr} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{array}\right]$

Relationship b/w Generator & Parity Matrices 10

• If G and H are generator and parity-check matrices for C, then for every s, we must have $(sG)H^T = \vec{0}$ — since we should only generate valid codewords. It follows that

$$GH^T = \overline{0}$$

- Furthermore, any H with N-K independent rows that satisfies this is a valid parity-check matrix for C.
- Suppose G is in systematic form, so for some P,

$$G = [I_K \mid P]$$

 \bullet Then a parity-check matrix for ${\mathcal C}$ in systematic form is:

$$H = \left[-P^T \mid I_{N-K}\right]$$

since $GH^T = -I_K P + PI_{N-K} = \vec{0}$. (Note that in Z_2 , $-P^T = P^T$.)

GENERATOR & PARITY MATRICES IN SYSTEMATIC FORM $\,9$

- Using elementary row operations and column permutations, we can convert any generator matrix to a generator matrix for an equivalent code that is is *systematic form*, in which the left end of the matrix is the identity matrix.
- Similarly, we can convert to the systematic form for a parity-check matrix, which has an identity matrix in the right end.
- \bullet For the [5,2] code, only permutations are needed. The generator matrix can be permuted by swapping columns 1 and 3:

 $\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

• When we use a systematic generator matrix to encode a block s as $\mathbf{t} = \mathbf{s}G$, the first K bits will be the same as those in s. The remaining N - K bits can be seen as "check bits".

More on Hamming Distance

11

- Recall that the Hamming distance, $d(\mathbf{u}, \mathbf{v})$, of two codewords \mathbf{u} and \mathbf{v} is the number of positions where \mathbf{u} and \mathbf{v} have different symbols.
- This is a proper distance, which satisfies the *triangle inequality*:

$$d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$$

• Here's a picture showing why:

u: 0 1 1 0 0 1 1 0 1 1 1 0

In this example, $d(\mathbf{u}, \mathbf{v}) = 6$, $d(\mathbf{u}, \mathbf{v} = 5)$, and $d(\mathbf{u}, \mathbf{w}) = 7$.

MINIMUM DISTANCE AND DECODING

12

13

- A code's *minimum distance* is the minimum of $d(\mathbf{u}, \mathbf{v})$ over all distinct codewords \mathbf{u} and \mathbf{v} .
- If the minimum distance is at least 2t+1, a nearest neighbor decoder will always decode correctly when there are t or fewer errors.
- Here's why: Suppose the code has distance $d \ge 2t + 1$. If u is sent and v is received, having no more than t errors, then
- $-d(\mathbf{u},\mathbf{v}) \leq t.$

$$-d(\mathbf{u},\mathbf{u}') \geq d$$
 for any codeword $\mathbf{u}' \neq \mathbf{u}$

From the triangle inequality:

$$d(\mathbf{u}, \mathbf{u}') \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{u}')$$

• It follows that

 $d(\mathbf{v}, \mathbf{u}') \ge d(\mathbf{u}, \mathbf{u}') - d(\mathbf{u}, \mathbf{v}) \ge d - t \ge (2t + 1) - t \ge t + 1$

The decoder will therefore decode correctly to ${\bf u},$ at distance t, rather than to some other ${\bf u}'.$

A PICTURE OF DISTANCE AND DECODING

• Here's a picture of codewords (black dots) for a code with minimum distance 2t + 1, showing how some transmissions are decoded:

MINIMUM DISTANCE FOR LINEAR CODES

- To find the minimum distance for a code with 2^{K} codewords, we will in general have to look at all $2^{K}(2^{K}-1)/2$ pairs of codewords.
- But there's a short-cut for linear codes...
- Suppose two distinct codewords \mathbf{u} and \mathbf{v} are a distance d apart. Then the codeword $\mathbf{u} - \mathbf{v}$ will have d non-zero elements. The number of non-zero elements in a codeword is called its *weight*.
- Conversely, if a non-zero codeword **u** has weight d, then the minimum distance for the code is at least d, since $\vec{0}$ is a codeword, and $d(\mathbf{u}, \vec{0})$ is equal to the weight of **u**.
- So the minimum distance of a linear code is equal to the minimum weight of the $2^{K}-1$ non-zero codewords. (This is useful for small codes, but when K is large, finding the minimum distance is difficult in general.)

EXAMPLES OF MINIMUM DISTANCE AND ERROR CORRECTION FOR LINEAR CODES 15

 \bullet Recall the [5,2] code with the following codewords:

00000 00111 11001 11110

- The three non-zero codewords have weights of 3, 3, and 4. This code therefore has minimum distance 3, and thus can correct any single error since (2t + 1 = 3 for t = 1).
- \bullet The single-parity-check code with ${\cal N}=4$ has these codewords:

0000 0011 0101 0110 1001 1010 1100 1111

- The smallest weight of a non-zero codeword above is 2, so this is the minimum distance of this code.
- This is too small to guarantee correction of even one error. (Though the presence of a single error can be *detected*.)

Finding Minimum Distance From a Check Matrix 16

- \bullet We can find the minimum distance of a linear code from a parity-check matrix for it, H.
- \bullet The minimum distance is equal to the smallest number of linearly-dependent columns of H.
- Why? A vector **u** is a codeword iff $\mathbf{u}H^T = \vec{0}$. If d columns of H are linearly dependent, let **u** have 1s in those positions, and 0s elsewhere. This **u** is a codeword of weight d. And if there were any codeword of weight less than d, the 1s in that codeword would identify a set of less than d linearly-dependent columns of H.
- Special cases:
- If H has a column of all zeros, then d = 1.
- $-\operatorname{If} H$ has two identical columns, then $d \leq 2$.
- -For binary codes, if all columns are distinct and non-zero $d \ge 3$.