LECTURE 16:

Equivalent Codes \& Systematic Forms

November 6, 2006

- Using aritmetic mod 2, we could represent a code using either a set of basis functions or a set of constraint (check) equations, represented a generator matrix G or a parity check matrix H.
- Every linear combination of basis vectors is a valid codeword and all valid codewords are spanned by the basis. Similarly all valid codewords satisfy every check equation and any bitstring which satisfies all equations is a valid codeword.
- The rows of the generator matrix form a basis for the subspace of valid codes; we could encode a source message s into its transmission \mathbf{t} by simple matrix multiplication: $\mathbf{t}=\mathbf{s} G$.
- The rows of the parity check matrix H form a basis for the complement of the code subspace and represent check equations that must be satisfied by every valid codeword.
That is, all codewords \mathbf{v} are orthogonal to all rows of H (lie in the null space of H), meaning that $\mathbf{v} H^{T}=\overrightarrow{0}$.

Example: Generator Matrix for the [5, 2] Code 3

- Recall the linear $[5,2]$ code from lecture 13 (page 12):
$\{00000,00111,11001,11110\}$
We know it is linear since all sums of codewords are also codewords:

$$
\begin{aligned}
& 00111+11001=11110 \\
& 00111+11110=11001 \\
& 11001+11110=00111
\end{aligned}
$$

- Here's a generator matrix for this $[5,2]$ code:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- Encoding the message block $(1,1)$ using the generator matrix above:

$$
\mathbf{s} G=\mathbf{t}
$$

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

- Here is one parity-check matrix for the $[5,2]$ code:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- We see that 11001 is a codeword as follows:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- But 10011 isn't a codeword, since

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

- There are usually many parity-check matrices for a given code.
- We can get one such matrix from another using the following "elementary row operations", which don't alter the solutions to the equations the parity-check matrix represents:
- Swapping two rows.
- Adding a row to a different row.

Ex: This parity-check matrix for the $[5,2]$ code:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

can be transformed into this alternative:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Repetition Codes and Single Parity-Check Codes 5

- An $[N, 1]$ repetition code has the following generator matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \quad \text { for } N=4
$$

Here is a parity-check matrix for this code:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

- One generator matrix for the $[N, N-1]$ single parity-check code:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \text { for } N=4
$$

Here is the parity-check matrix for this code:

- We can apply the same elementary row operations to a generator matrix for a code, in order to produce another generator matrix, since these operations just convert one set of basis vectors to another.
Example: Here is a generator matrix for the $[5,2]$ code we have been looking at:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Here is another generator matrix, found by adding the first row to the second:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Note: These manipulations leave the set of codewords unchanged, but they don't leave the way we encode messages by computing $\mathbf{t}=\mathbf{s} G$ unchanged!

- Two codes are said to be equivalent if the codewords of one are just the codewords of the other with the order of symbols permuted.
- Permuting the order of the columns of a generator matrix will produce a generator matrix for an equivalent code, and similarly for a paritycheck matrix.
- Example: Here is a generator matrix for the $[5,2]$ code we have been looking at:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- We can get an equivalent code using the following generator matrix obtained by moving the last column to the middle:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

- If G and H are generator and parity-check matrices for \mathcal{C}, then for every s, we must have $(\mathbf{s} G) H^{T}=\overrightarrow{0}$ — since we should only generate valid codewords. It follows that

$$
G H^{T}=\overrightarrow{0}
$$

- Furthermore, any H with $N-K$ independent rows that satisfies this is a valid parity-check matrix for \mathcal{C}.
- Suppose G is in systematic form, so for some P,

$$
G=\left[I_{K} \mid P\right]
$$

- Then a parity-check matrix for \mathcal{C} in systematic form is:

$$
\begin{aligned}
& H=\left[-P^{T} \mid I_{N-K}\right] \\
& \text { since } G H^{T}=-I_{K} P+P I_{N-K}=\overrightarrow{0}
\end{aligned}
$$

$$
\left(\text { Note that in } Z_{2},-P^{T}=P^{T} .\right)
$$

- Recall that the Hamming distance, $d(\mathbf{u}, \mathbf{v})$, of two codewords \mathbf{u} and \mathbf{v} is the number of positions where \mathbf{u} and \mathbf{v} have different symbols.
- This is a proper distance, which satisfies the triangle inequality:

$$
d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v})+d(\mathbf{v}, \mathbf{w})
$$

- Here's a picture showing why:

$$
\begin{array}{lllllllllllll}
\mathbf{u}: 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
\mathbf{v}: 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\mathbf{w} & 0 & & & - & - & - & & & & & - \\
\mathbf{w} & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
$$

In this example, $d(\mathbf{u}, \mathbf{v})=6, d(\mathbf{u}, \mathbf{v}=5)$, and $d(\mathbf{u}, \mathbf{w})=7$.

- A code's minimum distance is the minimum of $d(\mathbf{u}, \mathbf{v})$ over all distinct codewords \mathbf{u} and \mathbf{v}.
- If the minimum distance is at least $2 t+1$, a nearest neighbor decoder will always decode correctly when there are t or fewer errors.
- Here's why: Suppose the code has distance $d \geq 2 t+1$.

If \mathbf{u} is sent and \mathbf{v} is received, having no more than t errors, then
$-d(\mathbf{u}, \mathbf{v}) \leq t$.
$-d\left(\mathbf{u}, \mathbf{u}^{\prime}\right) \geq d$ for any codeword $\mathbf{u}^{\prime} \neq \mathbf{u}$.
From the triangle inequality:

$$
d\left(\mathbf{u}, \mathbf{u}^{\prime}\right) \leq d(\mathbf{u}, \mathbf{v})+d\left(\mathbf{v}, \mathbf{u}^{\prime}\right)
$$

- It follows that

$$
d\left(\mathbf{v}, \mathbf{u}^{\prime}\right) \geq d\left(\mathbf{u}, \mathbf{u}^{\prime}\right)-d(\mathbf{u}, \mathbf{v}) \geq d-t \geq(2 t+1)-t \geq t+1
$$

The decoder will therefore decode correctly to \mathbf{u}, at distance t, rather than to some other \mathbf{u}^{\prime}.

- To find the minimum distance for a code with 2^{K} codewords, we will in general have to look at all $2^{K}\left(2^{K}-1\right) / 2$ pairs of codewords.
- But there's a short-cut for linear codes...
- Suppose two distinct codewords \mathbf{u} and \mathbf{v} are a distance d apart. Then the codeword $\mathbf{u}-\mathbf{v}$ will have d non-zero elements.
The number of non-zero elements in a codeword is called its weight.
- Conversely, if a non-zero codeword \mathbf{u} has weight d, then the minimum distance for the code is at least d, since $\overrightarrow{0}$ is a codeword, and $d(\mathbf{u}, \overrightarrow{0})$ is equal to the weight of \mathbf{u}.
- So the minimum distance of a linear code is equal to the minimum weight of the $2^{K}-1$ non-zero codewords. (This is useful for small codes, but when K is large, finding the minimum distance is difficult in general.)

A Picture of Distance and Decoding

- Here's a picture of codewords (black dots) for a code with minimum distance $2 t+1$, showing how some transmissions are decoded:

Examples of Minimum Distance and Error Correction for Linear Codes

- Recall the $[5,2]$ code with the following codewords:

$$
00000 \quad 00111 \quad 11001 \quad 11110
$$

- The three non-zero codewords have weights of 3,3 , and 4.

This code therefore has minimum distance 3 , and thus can correct any single error since $(2 t+1=3$ for $t=1)$.

- The single-parity-check code with $N=4$ has these codewords:

$$
\begin{array}{llllllll}
0000 & 0011 & 0101 & 0110 & 1001 & 1010 & 1100 & 1111
\end{array}
$$

- The smallest weight of a non-zero codeword above is 2 , so this is the minimum distance of this code.
- This is too small to guarantee correction of even one error.
(Though the presence of a single error can be detected.)
- We can find the minimum distance of a linear code from a paritycheck matrix for it, H.
- The minimum distance is equal to the smallest number of linearlydependent columns of H.
- Why? A vector \mathbf{u} is a codeword iff $\mathbf{u} H^{T}=\overrightarrow{0}$. If d columns of H are linearly dependent, let \mathbf{u} have 1 s in those positions, and 0 s elsewhere. This \mathbf{u} is a codeword of weight d. And if there were any codeword of weight less than d, the 1 s in that codeword would identify a set of less than d linearly-dependent columns of H.
- Special cases:
- If H has a column of all zeros, then $d=1$.
- If H has two identical columns, then $d \leq 2$.
- For binary codes, if all columns are distinct and non-zero $d \geq 3$.

