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Codes for Blocks of Symbols 1

• In error-correcting coding, we transmit a block of K message
symbols by encoding it as a block of N transmission symbols.

• A code C ⊆ AN
X is a subset of all possible blocks of length N .

• The elements of C are called the codewords.
These are the only blocks that we ever transmit.

• Normally we design the code to have the same number of
codewords as possible message blocks (2K for binary messages)
and define a mapping between message blocks and codewords.

• The rate of C is R = log2 |C|/N , which is K/N for binary channels.
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Shannon’s Noisy Coding Theorem 2

• Shannon’s noisy coding theorem states that:

For any channel with capacity C, any desired error probability,
ǫ > 0, and any transmission rate, R < C, there exists a code
with some length N having rate at least R such that the
probability of error when decoding this code by maximum
likelihood is less than ǫ.

• In other words: We can transmit at a rate arbitrarily close to the
channel capacity with arbitrarily small probability of error.

• The converse is also true: We cannot transmit with arbitrarily
small error probability at a rate greater than the channel capacity.
(see BSC example at the end of last class)

•We could always chose to transmit beyond the capacity, but not
with vanishly small error – our best possible error rate would still be
finite.

Long Blocks Might be Needed 3

• Shannon’s second theorem (above) tells us that for any noisy
channel, there is some code which allows us to achieve error free
transmission at a rate up to the capacity.

• However, this might require us to encode our message in very long
blocks. Why?

• Intuitively it is because we need to add just the right fraction of
redundancy; too little and we won’t be able to correct the erorrs,
too much and we won’t achieve the full channel capacity.

• For many real world situations, the block sizes used are thousands
of bits, e.g. K = 1024 or K = 4096.



Potential Problems with Large Blocks 4

• Using very large blocks could potentially cause some serious
practical problems with storage/retrieval of codewords.

• In particular, if we are encoding blocks of K bits, our code will
have 2K codewords. For K ≈ 1000 this is a huge number!

• How could we even store all the codewords?

• How could we retrieve (look up) the N bit codeword corresponding
to a given K bit message?

• How could we check if a given block of N bits is a valid codeword
or a forbidden encoding?

• Today, we’ll see how to solve all these problems by representing the
codes mathematically and using the magic of linear algebra.

The Finite Field Z2 5

• From now on, we will consider only at binary channels, whose input
and output alphabets are both {0, 1}.

•We will look at the symbols 0 and 1 as elements of Z2,
the integers considered modulo 2.

• Z2 (also called F2 or GF (2)) is the smallest example of a “field” — a
collection of “numbers” that behave like real and complex numbers.
Specifically, in a field:

– Addition and multiplication are defined. They are commutative
and associative. Multiplication is distributive over addition.

– There are numbers called 0 and 1, such that
z + 0 = z and z · 1 = z for all z.

– Subtraction and division (except by 0) can be done, and these
operations are the inverses of addition and multiplication.

Arithmetic in Z2 6

• Addition and multiplication in Z2 are defined as follows:

0 + 0 = 0 0 · 0 = 0

0 + 1 = 1 0 · 1 = 0

1 + 0 = 1 1 · 0 = 0

1 + 1 = 0 1 · 1 = 1

• This can also be seen as arithmetic modulo 2, in which we always
take the remainder of the result after dividing by 2.

• Viewed as logical operations, addition is the same as ‘exclusive-or’,
and multiplication is the same as ‘and’.

Note: In Z2, −a = a, and hence a − b = a + b.

Vector Spaces Over Z2 7

• Just as we can define vectors over the reals, we can define vectors
over any other field, including over Z2. We get to add such vectors,
and multiply them by a scalar from the field.

•We can think of these vectors as N -tuples of field elements.
For instance, with vectors of length five over Z2:

(1, 0, 0, 1, 1) + (0, 1, 0, 0, 1) = (1, 1, 0, 1, 0)

1 · (1, 0, 0, 1, 1) = (1, 0, 0, 1, 1)

0 · (1, 0, 0, 1, 1) = (0, 0, 0, 0, 0)

•Most properties of real vector spaces hold for vectors over Z2 — eg,
the existence of basis vectors.

•We refer to the vector space of all N -tuples from Z2 as ZN
2 ; these

are all bitstrings of length N . We will use boldface letters such as u

and v to refer to such vectors.



Linear Codes 8

•We can view ZN
2 as the input and output alphabet of the N th

extension of a binary channel.

• A code, C, for this extension of the channel is a subset of ZN
2 .

• C is a linear code if the following condition holds:

***If u and v are codewords of C, then u+v is also a codeword.***

In other words, C must be a subspace of ZN
2 .

• Notice that since u + u = ~0, the all-zero codeword must be in C.

Note: For non-binary codes, we need a second condition, namely that
if u is a codeword of C and z is in the field, then zu is also a codeword.

Linear Codes From Basis Vectors 9

•We can construct a linear code by choosing K linearly-independent
basis vectors from ZN

2 .

•We’ll call the basis vectors u1, . . . ,uK . We define the set of code-
words to be all those vectors that can be written in the form

a1u1 + a2u2 + · · · + aKuK

where a1, . . . , aK are elements of Z2.

• The codewords obtained with different a1, . . . , aK are all different.
(Otherwise u1, . . . ,uK wouldn’t be linearly-independent.)

• There are therefore 2K codewords. We can encode a block consisting
of K symbols, a1, . . . , ak, from Z2 as a codeword of length N using
the formula above.

• This is called an [N,K] code. (MacKay’s book uses (N,K), but
that has another meaning in other books.)

Linear Codes From Linear Equations 10

• Another way to define a linear code for ZN
2 is to provide a set of

simultaneous equations that must be satisfied for v to be a codeword.

• These equations have the form c · v = 0, ie

c1v1 + c2v2 + · · · + cNvN = 0

• The set of solutions is a linear code because
c · u = 0 and c · v = 0 implies c · (u + v) = 0.

• If we have N − K such equations, and they are independent, the
code will have 2K codewords.

• The basis representation and the constraint equation representations
are equivalent: we can always convert from one to the other. (In
linear algebra terms, we can either specify a basis for the codeword
subspace or a basis for its complement null space.)

• If K is close to N , it is more compact to specify the constraint
equations; if K is close to 0, it is more compact to specify the basis.

The Repetition Codes Over Z2 11

• A repetition code for ZN
2 has only two codewords — one has all 0s,

the other all 1s.

• This is a linear [N, 1] code, with (1, . . . , 1) as the basis vector.

• The code is also defined by the following N − 1 equations satisfied
by a codeword v:

v1 + v2 = 0, v2 + v3 = 0, · · · , vN−1 + vN = 0

• Each of these equations has two solutions, {0, 0} and {1, 1}.
But the only solutions which satisfy them all are all 0s or all 1s.
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N=12 transmission bitsK=3 message bits



The Single Parity-Check Codes 12

• An [N,N − 1] code over Z2 can be defined by the following single
equation satisfied by a codeword v:

v1 + v2 + · · · + vN = 0

In other words, the parity of all the bits in a codeword must be even.

• This code can also be defined using N − 1 basis vectors.
One choice of basis vectors when N = 5 is as follows:

(1, 0, 0, 0, 1)

(0, 1, 0, 0, 1)

(0, 0, 1, 0, 1)

(0, 0, 0, 1, 1)
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N=7 transmission bitsK=6 message bits

A [5, 2] Binary Code 13

• Recall the following code from lecture 13 (page 12):

{ 00000, 00111, 11001, 11110 }

• Is this a linear code?
We need to check that all sums of codewords are also codewords:

00111 + 11001 = 11110

00111 + 11110 = 11001

11001 + 11110 = 00111

•We can generate this code using 00111 and 11001 as basis vectors.
We then get the four codewords as follows:

0 · 00111 + 0 · 11001 = 00000

0 · 00111 + 1 · 11001 = 11001

1 · 00111 + 0 · 11001 = 00111

1 · 00111 + 1 · 11001 = 11110

Generator Matrices 14

•We can arrange a set of basis vectors for a linear code in a generator

matrix, each row of which is a basis vector.

• A generator matrix for an [N,K] code has K rows and N columns.

•We can use a generator matrix for an [N,K] code to encode a block
of K message bits as a block of N bits to send through the channel.

•We regard the K message bits as a row vector, s, and multiply by
the generator matrix, G, to produce the channel input, t:

t = sG

• If the rows of G are linearly independent, each distinct message s

will produce a different channel encoding t, and every t that is a
valid codeword will be produced by some s.

• Note: Almost all codes have more than one generator matrix.

Example: Generator Matrix for the [5, 2] Code 15

• Here’s a generator matrix for the [5, 2] code looked at earlier:
[

0 0 1 1 1
1 1 0 0 1

]

• Encoding the message block (1, 1) using the generator matrix above:

sG = t

[

1 1
]

[

0 0 1 1 1
1 1 0 0 1

]

=
[

1 1 1 1 0
]



Parity-Check Matrices 16

• Suppose we have specified an [N,K] code by
a set of M = N − K equations satisfied by any codeword, v:

c1,1 v1 + c1,2 v2 + · · · + c1,N vN = 0

c2,1 v1 + c2,2 v2 + · · · + c2,N vN = 0
...

cM,1 v1 + cM,2 v2 + · · · + cM,N vN = 0

•We can arrange the coefficients in these equations in a parity-check

matrix, as follows:








c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N
...

cM,1 cM,2 · · · cM,N









• If C has parity-check matrix H , we can check whether v is in C by
seeing whether vHT = ~0.

Note: Almost all codes have more than one parity-check matrix.

Example: Parity Check Matrix for the [5, 2] Code 17

• Here is one parity-check matrix for the [5, 2] code used earlier:




1 1 0 0 0
0 0 1 1 0
1 0 1 0 1





•We see that 11001 is a codeword as follows:

[

1 1 0 0 1
]













1 0 1
1 0 0
0 1 1
0 1 0
0 0 1













=
[

0 0 0
]

• But 10011 isn’t a codeword, since

[

1 0 0 1 1
]













1 0 1
1 0 0
0 1 1
0 1 0
0 0 1













=
[

1 1 0
]

Repetition Codes and Single Parity-Check Codes 18

• An [N, 1] repetition code has the following generator matrix:
[

1 1 1 1
]

for N=4

Here is a parity-check matrix for this code:




1 0 0 1
0 1 0 1
0 0 1 1





•One generator matrix for the [N,N − 1] single parity-check code is:




1 0 0 1
0 1 0 1
0 0 1 1





Here is the parity-check matrix for this code:
[

1 1 1 1
]


