Lecture 15:

Linear Codes

November 1, 2006

- Shannon's noisy coding theorem states that:

For any channel with capacity C, any desired error probability, $\epsilon>0$, and any transmission rate, $R<C$, there exists a code with some length N having rate at least R such that the probability of error when decoding this code by maximum likelihood is less than ϵ.

- In other words: We can transmit at a rate arbitrarily close to the channel capacity with arbitrarily small probability of error.
- The converse is also true: We cannot transmit with arbitrarily small error probability at a rate greater than the channel capacity. (see BSC example at the end of last class)
- We could always chose to transmit beyond the capacity, but not with vanishly small error - our best possible error rate would still be finite.

Long Blocks Might be Needed 3

- Shannon's second theorem (above) tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity.
- However, this might require us to encode our message in very long blocks. Why?
- Intuitively it is because we need to add just the right fraction of redundancy; too little and we won't be able to correct the erorrs, too much and we won't achieve the full channel capacity.
- For many real world situations, the block sizes used are thousands of bits, e.g. $K=1024$ or $K=4096$.
- Using very large blocks could potentially cause some serious practical problems with storage/retrieval of codewords.
- In particular, if we are encoding blocks of K bits, our code will have 2^{K} codewords. For $K \approx 1000$ this is a huge number!
- How could we even store all the codewords?
- How could we retrieve (look up) the N bit codeword corresponding to a given K bit message?
- How could we check if a given block of N bits is a valid codeword or a forbidden encoding?
- Today, we'll see how to solve all these problems by representing the codes mathematically and using the magic of linear algebra.
- Addition and multiplication in Z_{2} are defined as follows:

$$
\begin{array}{ll}
0+0=0 & 0 \cdot 0=0 \\
0+1=1 & 0 \cdot 1=0 \\
1+0=1 & 1 \cdot 0=0 \\
1+1=0 & 1 \cdot 1=1
\end{array}
$$

- This can also be seen as arithmetic modulo 2 , in which we always take the remainder of the result after dividing by 2 .
- Viewed as logical operations, addition is the same as 'exclusive-or', and multiplication is the same as 'and'.
Note: $\ln Z_{2},-a=a$, and hence $a-b=a+b$.

The Finite Field Z_{2}

- From now on, we will consider only at binary channels, whose input and output alphabets are both $\{0,1\}$.
- We will look at the symbols 0 and 1 as elements of Z_{2}, the integers considered modulo 2.
- Z_{2} (also called F_{2} or $G F(2)$) is the smallest example of a "field" - a collection of "numbers" that behave like real and complex numbers. Specifically, in a field:
- Addition and multiplication are defined. They are commutative and associative. Multiplication is distributive over addition.
- There are numbers called 0 and 1 , such that

$$
z+0=z \text { and } z \cdot 1=z \text { for all } z
$$

- Subtraction and division (except by 0) can be done, and these operations are the inverses of addition and multiplication.

Vector Spaces Over Z_{2}

- Just as we can define vectors over the reals, we can define vectors over any other field, including over Z_{2}. We get to add such vectors, and multiply them by a scalar from the field.
- We can think of these vectors as N-tuples of field elements. For instance, with vectors of length five over Z_{2} :

$$
\begin{aligned}
(1,0,0,1,1)+(0,1,0,0,1) & =(1,1,0,1,0) \\
1 \cdot(1,0,0,1,1) & =(1,0,0,1,1) \\
0 \cdot(1,0,0,1,1) & =(0,0,0,0,0)
\end{aligned}
$$

- Most properties of real vector spaces hold for vectors over $Z_{2}-\mathrm{eg}$, the existence of basis vectors.
- We refer to the vector space of all N-tuples from Z_{2} as Z_{2}^{N}; these are all bitstrings of length N. We will use boldface letters such as \mathbf{u} and \mathbf{v} to refer to such vectors.
- We can view Z_{2}^{N} as the input and output alphabet of the N th extension of a binary channel.
- A code, \mathcal{C}, for this extension of the channel is a subset of Z_{2}^{N}.
- \mathcal{C} is a linear code if the following condition holds:
${ }^{* * *}$ If \mathbf{u} and \mathbf{v} are codewords of \mathcal{C}, then $\mathbf{u}+\mathbf{v}$ is also a codeword.*** In other words, \mathcal{C} must be a subspace of Z_{2}^{N}.
- Notice that since $\mathbf{u}+\mathbf{u}=\overrightarrow{0}$, the all-zero codeword must be in \mathcal{C}.

Note: For non-binary codes, we need a second condition, namely that if \mathbf{u} is a codeword of \mathcal{C} and z is in the field, then $z \mathbf{u}$ is also a codeword.

- Another way to define a linear code for Z_{2}^{N} is to provide a set of simultaneous equations that must be satisfied for v to be a codeword.
- These equations have the form $\mathbf{c} \cdot \mathbf{v}=0$, ie

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{N} v_{N}=0
$$

- The set of solutions is a linear code because

$$
\mathbf{c} \cdot \mathbf{u}=0 \text { and } \mathbf{c} \cdot \mathbf{v}=0 \text { implies } \mathbf{c} \cdot(\mathbf{u}+\mathbf{v})=0
$$

- If we have $N-K$ such equations, and they are independent, the code will have 2^{K} codewords.
- The basis representation and the constraint equation representations are equivalent: we can always convert from one to the other. (In linear algebra terms, we can either specify a basis for the codeword subspace or a basis for its complement null space.)
- If K is close to N, it is more compact to specify the constraint equations; if K is close to 0 , it is more compact to specify the basis.

Linear Codes From Basis Vectors

- We can construct a linear code by choosing K linearly-independent basis vectors from Z_{2}^{N}.
- We'll call the basis vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$. We define the set of codewords to be all those vectors that can be written in the form

$$
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{K} \mathbf{u}_{K}
$$

where a_{1}, \ldots, a_{K} are elements of Z_{2}.

- The codewords obtained with different a_{1}, \ldots, a_{K} are all different. (Otherwise $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$ wouldn't be linearly-independent.)
- There are therefore 2^{K} codewords. We can encode a block consisting of K symbols, a_{1}, \ldots, a_{k}, from Z_{2} as a codeword of length N using the formula above.
- This is called an $[N, K]$ code. (MacKay's book uses (N, K), but that has another meaning in other books.)

The Repetition Codes Over Z_{2} 11

- A repetition code for Z_{2}^{N} has only two codewords - one has all 0s, the other all 1s.
- This is a linear $[N, 1]$ code, with $(1, \ldots, 1)$ as the basis vector.
- The code is also defined by the following $N-1$ equations satisfied by a codeword \mathbf{v} :

$$
v_{1}+v_{2}=0, \quad v_{2}+v_{3}=0, \cdots, \quad v_{N-1}+v_{N}=0
$$

- Each of these equations has two solutions, $\{0,0\}$ and $\{1,1\}$. But the only solutions which satisfy them all are all 0 s or all 1 s .

- An $[N, N-1]$ code over Z_{2} can be defined by the following single equation satisfied by a codeword \mathbf{v} :

$$
v_{1}+v_{2}+\cdots+v_{N}=0
$$

In other words, the parity of all the bits in a codeword must be even.

- This code can also be defined using $N-1$ basis vectors.

One choice of basis vectors when $N=5$ is as follows:

$$
\begin{aligned}
& (1,0,0,0,1) \\
& (0,1,0,0,1) \\
& (0,0,1,0,1) \\
& (0,0,0,1,1)
\end{aligned}
$$

- We can arrange a set of basis vectors for a linear code in a generator matrix, each row of which is a basis vector.
- A generator matrix for an $[N, K]$ code has K rows and N columns.
- We can use a generator matrix for an $[N, K]$ code to encode a block of K message bits as a block of N bits to send through the channel.
- We regard the K message bits as a row vector, s, and multiply by the generator matrix, G, to produce the channel input, \mathbf{t} :

$$
\mathbf{t}=\mathbf{s} G
$$

- If the rows of G are linearly independent, each distinct message \mathbf{s} will produce a different channel encoding \mathbf{t}, and every \mathbf{t} that is a valid codeword will be produced by some s .
- Note: Almost all codes have more than one generator matrix.

Example: Generator Matrix for the [5, 2] Code 15

- Here's a generator matrix for the $[5,2]$ code looked at earlier:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- Encoding the message block $(1,1)$ using the generator matrix above:

$$
\mathbf{s} G=\mathbf{t}
$$

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

- Suppose we have specified an $[N, K]$ code by
a set of $M=N-K$ equations satisfied by any codeword, \mathbf{v} :

$$
\begin{aligned}
& c_{1,1} v_{1}+c_{1,2} v_{2}+\cdots+c_{1, N} v_{N}=0 \\
& c_{2,1} v_{1}+c_{2,2} v_{2}+\cdots+c_{2, N} v_{N}=0
\end{aligned}
$$

$$
c_{M, 1} v_{1}+c_{M, 2} v_{2}+\cdots+c_{M, N} v_{N}=0
$$

- We can arrange the coefficients in these equations in a parity-check matrix, as follows:

$$
\left[\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, N} \\
c_{2,1} & c_{2,2} & \cdots & c_{2, N} \\
& & \vdots & \\
c_{M, 1} & c_{M, 2} & \cdots & c_{M, N}
\end{array}\right]
$$

- If \mathcal{C} has parity-check matrix H, we can check whether \mathbf{v} is in \mathcal{C} by seeing whether $\mathbf{v} H^{T}=\overrightarrow{0}$.
Note: Almost all codes have more than one parity-check matrix.
- An $[N, 1]$ repetition code has the following generator matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \quad \text { for } \mathrm{N}=4
$$

Here is a parity-check matrix for this code:
$\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$

- One generator matrix for the $[N, N-1]$ single parity-check code is:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Here is the parity-check matrix for this code:
$\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$

Example: Parity Check Matrix for the [5, 2] Code 17

- Here is one parity-check matrix for the $[5,2]$ code used earlier:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- We see that 11001 is a codeword as follows:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- But 10011 isn't a codeword, since

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

