CSC310 – Information Theory Sam Roweis LECTURE 15:	• Shannon's noisy coding theorem states that: For any channel with capacity C , any desired error probability, $\epsilon > 0$, and any transmission rate, $R < C$, there exists a code with some length N having rate at least R such that the probability of error when decoding this code by maximum likelihood is less than ϵ .
Linear Codes	 In other words: We can transmit at a rate arbitrarily close to the channel capacity with arbitrarily small probability of error.
	• The converse is also true: We <i>cannot</i> transmit with arbitrarily small error probability at a rate greater than the channel capacity. (see BSC example at the end of last class)
November 1, 2006	• We could always chose to transmit beyond the capacity, but not with vanishly small error – our best possible error rate would still be finite.
Codes for Blocks of Symbols 1	Long Blocks Might be Needed 3
 In error-correcting coding, we transmit a block of K message symbols by <i>encoding</i> it as a block of N transmission symbols. 	• Shannon's second theorem (above) tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity.
 In error-correcting coding, we transmit a block of K message symbols by <i>encoding</i> it as a block of N transmission symbols. A <i>code</i> C ⊆ A^N_X is a subset of all possible blocks of length N. 	 Shannon's second theorem (above) tells us that for any noisy channel, there is some code which allows us to achieve error free
 In error-correcting coding, we transmit a block of K message symbols by <i>encoding</i> it as a block of N transmission symbols. A <i>code</i> C ⊆ A^N_X is a subset of all possible blocks of length N. The elements of C are called the <i>codewords</i>. These are the only blocks that we ever transmit. 	 Shannon's second theorem (above) tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity. However, this might require us to encode our message in very long
 In error-correcting coding, we transmit a block of K message symbols by <i>encoding</i> it as a block of N transmission symbols. A <i>code</i> C ⊆ A^N_X is a subset of all possible blocks of length N. The elements of C are called the <i>codewords</i>. These are the only blocks that we ever transmit. Normally we design the code to have the same number of codewords as possible message blocks (2^K for binary messages) 	 Shannon's second theorem (above) tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity. However, this might require us to encode our message in very long blocks. Why? Intuitively it is because we need to add just the right fraction of redundancy; too little and we won't be able to correct the erorrs,
 In error-correcting coding, we transmit a block of K message symbols by <i>encoding</i> it as a block of N transmission symbols. A code C ⊆ A^N_X is a subset of all possible blocks of length N. The elements of C are called the <i>codewords</i>. These are the only blocks that we ever transmit. Normally we design the code to have the same number of codewords as possible message blocks (2^K for binary messages) and define a mapping between message blocks and codewords. 	 Shannon's second theorem (above) tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity. However, this might require us to encode our message in very long blocks. Why? Intuitively it is because we need to add just the right fraction of redundancy; too little and we won't be able to correct the erorrs, too much and we won't achieve the full channel capacity. For many real world situations, the block sizes used are thousands

POTENTIAL PROBLEMS WITH LARGE BLOCKS

4

- Using very large blocks could potentially cause some serious practical problems with storage/retrieval of codewords.
- In particular, if we are encoding blocks of K bits, our code will have 2^K codewords. For $K \approx 1000$ this is a huge number!
- How could we even store all the codewords?
- How could we retrieve (look up) the N bit codeword corresponding to a given K bit message?
- How could we check if a given block of N bits is a valid codeword or a forbidden encoding?
- Today, we'll see how to solve all these problems by representing the codes *mathematically* and using the magic of *linear algebra*.

ARITHMETIC IN Z_2

• Addition and multiplication in Z_2 are defined as follows:

 $0 + 0 = 0 \quad 0 \cdot 0 = 0$ $0 + 1 = 1 \quad 0 \cdot 1 = 0$ $1 + 0 = 1 \quad 1 \cdot 0 = 0$ $1 + 1 = 0 \quad 1 \cdot 1 = 1$

- This can also be seen as arithmetic modulo 2, in which we always take the remainder of the result after dividing by 2.
- Viewed as logical operations, addition is the same as 'exclusive-or', and multiplication is the same as 'and'.

Note: In Z_2 , -a = a, and hence a - b = a + b.

The Finite Field Z_2

- From now on, we will consider only at binary channels, whose input and output alphabets are both $\{0, 1\}$.
- We will look at the symbols 0 and 1 as elements of Z_2 , the integers considered modulo 2.
- Z_2 (also called F_2 or GF(2)) is the smallest example of a "field" a collection of "numbers" that behave like real and complex numbers. Specifically, in a field:
- Addition and multiplication are defined. They are commutative and associative. Multiplication is distributive over addition.
- There are numbers called 0 and 1, such that
 - z + 0 = z and $z \cdot 1 = z$ for all z.
- Subtraction and division (except by 0) can be done, and these operations are the inverses of addition and multiplication.

Vector Spaces Over Z_2

- 7
- Just as we can define vectors over the reals, we can define vectors over any other field, including over Z_2 . We get to add such vectors, and multiply them by a scalar from the field.
- We can think of these vectors as N-tuples of field elements. For instance, with vectors of length five over Z_2 :

(1,0,0,1,1) + (0,1,0,0,1) = (1,1,0,1,0) $1 \cdot (1,0,0,1,1) = (1,0,0,1,1)$ $0 \cdot (1,0,0,1,1) = (0,0,0,0,0)$

- Most properties of real vector spaces hold for vectors over Z_2 eg, the existence of basis vectors.
- We refer to the vector space of all N-tuples from Z_2 as Z_2^N ; these are all bitstrings of length N. We will use boldface letters such as u and v to refer to such vectors.

6

LINEAR	CODES
--------	-------

- We can view Z_2^N as the input and output alphabet of the Nth extension of a binary channel.
- A code, C, for this extension of the channel is a subset of Z_2^N .
- C is a *linear code* if the following condition holds:
 - ***If \mathbf{u} and \mathbf{v} are codewords of \mathcal{C} , then $\mathbf{u} + \mathbf{v}$ is also a codeword.*** In other words, C must be a subspace of Z_2^N .
- Notice that since $\mathbf{u} + \mathbf{u} = \vec{0}$, the all-zero codeword must be in C.

Note: For non-binary codes, we need a second condition, namely that if \mathbf{u} is a codeword of \mathcal{C} and z is in the field, then $z\mathbf{u}$ is also a codeword.

LINEAR CODES FROM BASIS VECTORS

- We can construct a linear code by choosing K linearly-independent basis vectors from Z_2^N .
- We'll call the basis vectors $\mathbf{u}_1, \ldots, \mathbf{u}_K$. We define the set of codewords to be all those vectors that can be written in the form

 $a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \cdots + a_K\mathbf{u}_K$

where a_1, \ldots, a_K are elements of Z_2 .

- The codewords obtained with different a_1, \ldots, a_K are all different. (Otherwise $\mathbf{u}_1, \ldots, \mathbf{u}_K$ wouldn't be linearly-independent.)
- There are therefore 2^K codewords. We can encode a block consisting of K symbols, a_1, \ldots, a_k , from Z_2 as a codeword of length N using the formula above.
- This is called an [N, K] code. (MacKay's book uses (N, K), but that has another meaning in other books.)
- LINEAR CODES FROM LINEAR EQUATIONS • Another way to define a linear code for Z_2^N is to provide a set of simultaneous equations that must be satisfied for \mathbf{v} to be a codeword. • These equations have the form $\mathbf{c} \cdot \mathbf{v} = 0$, ie $c_1v_1 + c_2v_2 + \dots + c_Nv_N = 0$ • The set of solutions is a linear code because $\mathbf{c} \cdot \mathbf{u} = 0$ and $\mathbf{c} \cdot \mathbf{v} = 0$ implies $\mathbf{c} \cdot (\mathbf{u} + \mathbf{v}) = 0$. • If we have N - K such equations, and they are independent, the code will have 2^K codewords. • The basis representation and the constraint equation representations are equivalent: we can always convert from one to the other. (In linear algebra terms, we can either specify a basis for the codeword subspace or a basis for its complement null space.) • If K is close to N, it is more compact to specify the constraint equations; if K is close to 0, it is more compact to specify the basis. The Repetition Codes Over Z_2 9 11 • A repetition code for Z_2^N has only two codewords — one has all 0s, the other all 1s • This is a linear [N, 1] code, with $(1, \ldots, 1)$ as the basis vector. • The code is also defined by the following N-1 equations satisfied by a codeword \mathbf{v} : $v_1 + v_2 = 0$, $v_2 + v_3 = 0$, ..., $v_{N-1} + v_N = 0$ • Each of these equations has two solutions, $\{0, 0\}$ and $\{1, 1\}$. But the only solutions which satisfy them all are all 0s or all 1s.
 - 110

K=3 message bits

N=12 transmission bits

111111110000

8

Parity-Check Matrices 16	Repetition Codes and Single Parity-Check Codes 18
 Suppose we have specified an [N, K] code by a set of M = N − K equations satisfied by any codeword, v: c_{1,1} v₁ + c_{1,2} v₂ + ··· + c_{1,N} v_N = 0 c_{2,1} v₁ + c_{2,2} v₂ + ··· + c_{2,N} v_N = 0 : c_{M,1} v₁ + c_{M,2} v₂ + ··· + c_{M,N} v_N = 0 We can arrange the coefficients in these equations in a <i>parity-check matrix</i>, as follows:	• An $[N, 1]$ repetition code has the following generator matrix: $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \text{for N=4}$ Here is a parity-check matrix for this code: $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ • One generator matrix for the $[N, N - 1]$ single parity-check code is: $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ Here is the parity-check matrix for this code: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
Note: Almost all codes have more than one parity-check matrix. EXAMPLE: PARITY CHECK MATRIX FOR THE [5,2] CODE 17 • Here is one parity-check matrix for the [5,2] code used earlier: $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ • We see that 11001 is a codeword as follows: $\begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ • But 10011 isn't a codeword, since	
$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$	