Lecture 14:

## Channel Capacity

October 30, 2006

- Consider a BSC with probability $f$ of incorrect transmission.

From the channel's symmetry,

$$
H(Y \mid X)=f \log (1 / f)+(1-f) \log (1 /(1-f))
$$

which doesn't depend on the input distribution.

- $H(Y)$ does depend on the input distribution.

If $p_{0}$ is the probability of a " 0 " input, the output probabilities are $q_{0}=p_{0}(1-f)+\left(1-p_{0}\right) f$ and $q_{1}=\left(1-p_{0}\right)(1-f)+p_{0} f$, so

$$
H(Y)=q_{0} \log \left(1 / q_{0}\right)+q_{1} \log \left(1 / q_{1}\right)
$$

- This is maximized, at the value 1 bit, when $q_{0}=q_{1}=1 / 2$, which happens when $p_{0}=1 / 2$; thus the capacity in bits is:

$$
\begin{aligned}
C & =\max _{p_{0}} I(X ; Y)=\max _{p_{0}} H(Y)-H(Y \mid X) \\
& =1-\left[f \log _{2}(1 / f)+(1-f) \log _{2}(1 /(1-f))\right] \\
& =1-H_{2}(f)
\end{aligned}
$$

- Consider the asymmetric $Z$ channel, which always transmits " 0 "
- The mutual information $I(X ; Y)$ measures how much information the channel transmits, which depends on two things:

1) The transition probabilities $Q(j \mid i)$ for the channel.
2) The input distribution $p(i)$.

- We assume that we can't change (1), but that we can change (2).
- The capacity of a channel is the maximum value of $I(X ; Y)$ that can be obtained with any choice of input distribution.
- We will eventually see that the capacity is the rate at which data can be sent through the channel with vanishingly small probability of error.
correctly, but turns " 1 " into " 0 " with probability $f$. Suppose we use an input distribution in which " 0 " occurs with probability $p_{0}$.

$$
\begin{aligned}
q_{0} & =p_{0}+\left(1-p_{0}\right) f \\
q_{1} & =\left(1-p_{0}\right)(1-f) \\
H(Y) & =q_{0} \log \left(1 / q_{0}\right)+q_{1} \log \left(1 / q_{1}\right) \\
& =H_{2}\left(\left(1-p_{0}\right)(1-f)\right) \\
H(Y \mid X=0) & =0 \\
H(Y \mid X=1) & =f \log (1 / f)+(1-f) \log (1 /(1-f))=H_{2}(f) \\
H(Y \mid X) & =\left(1-p_{0}\right) H_{2}(f) \\
I(X ; Y) & =H(Y)-H(Y \mid X) \\
& =H_{2}\left(\left(1-p_{0}\right)(1-f)\right)-\left(1-p_{0}\right) H_{2}(f)
\end{aligned}
$$

- Here are plots of $I(X ; Y)$ as a function of $p_{0}$, when $f=0,0.2,0.4,0.6,0.8$ :


The maxima give the capacities of the channel for each $f$ :

| f | $p_{0}$ at max | Capacity |
| :---: | :---: | :---: |
| 0.0 | 0.500 | 1.000 |
| 0.2 | 0.564 | 0.618 |
| 0.4 | 0.591 | 0.407 |
| 0.6 | 0.608 | 0.246 |
| 0.8 | 0.621 | 0.114 |

- The $N$ th extension of a channel consists of a block of $N$ independent usages of the channel in a row.
- The input alphabet for this extension, $\mathcal{A}_{X}$, consists of $N$-tuples $\left(a_{i_{1}}, \ldots, a_{i_{N}}\right)$.
- The output alphabet, $\mathcal{A}_{Y}$, consists of $N$-tuples $\left(b_{j_{1}}, \ldots, b_{j_{N}}\right)$
- Assuming the $N$ usages don't interact, the transition probabilities for the extension are

$$
Q_{j_{1}, \ldots, j_{N} \mid i_{1}, \ldots, i_{N}}=Q_{j_{1} \mid i_{1}} Q_{j_{2} \mid i_{2}} \cdots Q_{j_{N} \mid i_{N}}
$$

- If we use input probabilities of

$$
p_{i_{1}, \ldots, i_{N}}=p_{i_{1}} \cdots p_{i_{N}}
$$

it is easy to show that the input and output entropies, the conditional entropies, and the mutual information are all $N$ times those of the original channel.

## Codes for the Extension

- A code, $\mathcal{C}$, for the $N$ th extension is a subset of the set of all possible blocks of $N$ input symbols - ie, $\mathcal{C} \subseteq \mathcal{A}_{X}^{N}$.
- The elements of $\mathcal{C}$ are called the codewords.

These are the only blocks that we ever transmit.

- For example, one code for the third extension of a BSC is the "repetition code", in which there are two codewords, 000 and 111.
- The $N$ th extension together with the code can be seen as a channel with $|\mathcal{C}|$ input symbols and $\left|\mathcal{A}_{Y}\right|^{N}$ output symbols.
- When the sender transmits a codeword in $\mathcal{C}$, the receiver might (in general) see any output block, $b_{j_{1}} \cdots b_{j_{N}} \in \mathcal{A}_{Y}^{N}$.
The receiver can try to decode this output in order to recover the codeword that was sent.
The optimal method of decoding is to choose a codeword, $w \in \mathcal{C}$, which maximizes

$$
P\left(w \mid b_{j_{1}} \cdots b_{j_{N}}\right)=\frac{P(w) P\left(b_{j_{1}} \cdots b_{j_{N}} \mid w\right)}{P\left(b_{j_{1}} \cdots b_{j_{N}}\right)}
$$

In case of a tie, we pick one of the best $w$ arbitrarily. If $P(w)$ is the same for all $w \in \mathcal{C}$, this scheme is equivalent to choosing $w$ to maximize the "likelihood", $P\left(b_{j_{1}} \cdots b_{j_{N}} \mid w\right)$.

- Suppose our original message is a sequence of $K$ bits.
(Otherwise, we might break our message up into $K$-bit blocks.)
- If we use a code with $2^{K}$ codewords, we can send this message (or block) as follows:
- The encoder maps the block of $K$ message symbols to a codeword.
- The encoder transmits this codeword.
- The decoder guesses at the codeword sent.
- The decoder maps the guessed codeword back to a block of $K$ message symbols.
We hope the block of decoded message symbols is the same as the original block!
Example: To send binary messages through a BSC with the repetition code, we use blocks of size one, and the map $0 \leftrightarrow 000,1 \leftrightarrow 111$.

Example: A Repetition Code

- Suppose we use the three-symbol repetition code for a BSC with $f=0.1$. Assume that the probability of 000 being sent is 0.7 and the probability of 111 being sent is 0.3 . What codeword should the decoder guess if the received symbols are 101?

$$
\begin{aligned}
& P\left(w=000 \mid b_{1}=1, b_{2}=0, b_{3}=1\right) \\
& \quad=\frac{P(w=000) P\left(b_{1}=1, b_{2}=0, b_{3}=1 \mid w=000\right)}{P\left(b_{1}=1, b_{2}=0, b_{3}=1\right)} \\
& \quad=\frac{0.7 \times 0.1 \times 0.9 \times 0.1}{0.7 \times 0.1 \times 0.9 \times 0.1+0.3 \times 0.9 \times 0.1 \times 0.9} \\
& \quad=0.206 \\
& P\left(w=111 \mid b_{1}=1, b_{2}=0, b_{3}=1\right) \\
& \quad=\frac{P(w=111) P\left(b_{1}=1, b_{2}=0, b_{3}=1 \mid w=111\right)}{P\left(b_{1}=1, b_{2}=0, b_{3}=1\right)} \\
& \quad=\frac{0.3 \times 0.9 \times 0.1 \times 0.9}{0.7 \times 0.1 \times 0.9 \times 0.1+0.3 \times 0.9 \times 0.1 \times 0.9} \\
& \quad=0.794
\end{aligned}
$$

Decoding for a BSC By Maximum Likelihood

- For a BSC, if all codewords are equally likely, the optimal decoding is the codeword differing in the fewest bits from what was received.
- The number of bits where two bit sequences, $u$ and $v$, differ is called the Hamming distance, written $d(u, v)$.
Example: $d(00110,01101)=3$
- The probability that a codeword $w$ of length $N$ will be received as a block $b$ through a BSC with error probability $f$ is

$$
(1-f)^{N-d(w, b)} f^{d(w, b)}=(1-f)^{N}\left(\frac{f}{1-f}\right)^{d(w, b)}
$$

- If $f<1 / 2$, and hence $f /(1-f)<1$, choosing $w$ to maximize this likelihood is the same as choosing $w$ to minimize the Hamming distance between $w$ and $b$.
- Here's a code with four 5-bit codewords:

$$
00000, \quad 00111, \quad 11001, \quad 11110
$$

- We can map between 2-bit blocks of message bits and these codewords as follows:

$$
\begin{array}{llll}
00 & \leftrightarrow 00000 & 01 & \leftrightarrow \\
10 & \leftrightarrow 1111 \\
10 & 11001 & 11 & \leftrightarrow \\
\hline
\end{array} 1110
$$

- Suppose the sender encodes the message block 01 as 00111 and transmits it, and the receiver then sees the output 00101.
- How should this be decoded? We look at the Hamming distances to each codeword:

$$
\begin{aligned}
& d(00000,00101)=2 \quad d(00111,00101)=1 \\
& d(11001,00101)=3 \quad d(11110,00101)=4
\end{aligned}
$$

- The decoder therefore picks the codeword 00111, corresponding to the message block 01 .
- Shannon's noisy coding theorem states that:

For any channel with capacity $C$, any desired error probability, $\epsilon>0$, and any transmission rate, $R<C$, there exists a code with some length $N$ having rate at least $R$ such that the probability of error when decoding this code by maximum likelihood is less than $\epsilon$.

- In other words: We can transmit at a rate arbitrarily close to the channel capacity with arbitrarily small probability of error.
- The converse is also true: We cannot transmit with arbitrarily small error probability at a rate greater than the channel capacity.
- We could always chose to transmit beyond the capacity, but not with vanishly small error - our best possible error rate would still be finite.

Why We Can't Use a BSC Beyond Capacity 15

- If we could transmit (with few errors) on a BSC beyond capacity $1-H_{2}(f)$, we could compress data to less than its entropy:
- Divide the data into two blocks: $x$ is of length $K$ and has bit probabilities of $1 / 2, y$ is of length $N$ and has bit probabilities of $f$ and $1-f$. The total information in $x$ and $y$ is $K+N H_{2}(f)$.
- Encode $x$ in a codeword $w$ of length $N$, and compute $z=w+y$, (addition modulo 2). This $z$ is the compressed form of the data.
- Apply the decoding algorithm to recover $w$ from $z$, treating $y$ as noise. We can then recover $x$ from $w$ and also $y=z-w$.
- We can handle a few errors by checking where they would occur and transmitting extra bits needed to identify corrections. This adds only a few more bits to the compressed form of the data.
Result: We compressed a source with entropy $\mathrm{K}+\mathrm{NH}_{2}(f)$ into only slightly more than $N$ bit, which is possible only if $N \geq K+N H_{2}(f)$, implying $R=K / N \leq 1-H_{2}(f)=C$.

