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Information Channels 1

• Suppose data must be sent through a device called a channel before
it can be used (e.g. a modem operating over a telco line, a wireless
network card or a cell phone). The channel may be unreliable.

•We can try to use a code designed counteract this, in other words a
way of re-representing the message so that even after unreliable
transmission it is still useful to us.

• Some questions we aim to answer:

– Can we quantify how much information a channel can transmit?

– If we have low tolerance for errors, will we be able to make full
use of a channel, or must some of the channel’s capacity be lost
to ensure a low error probability?

– How can we correct (or at least detect) errors in practice?

– Can we do as well in practice as the theory says is possible?

Error Correction in a Communications System 2

• In some applications, data arrives in a continuous stream.
An overall system might look like this:
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Error Correction / Error Detection 3

• The “channel” may transmit information through time rather than
space – ie, it is a memory device. (Many memory devices store data
in blocks – eg, 64 bits for RAM, 512 bytes for disk.)

• Can we correct some errors by adding a few more bits?
For instance, could we correct any bit single error if we use 71 bits
to encode a 64 bit block of data stored in RAM?

•We may also want to detect errors, even if we can’t correct them:

– For RAM or disk memory, error detection tells us that we need to
call the repair person.

– For some communication applications, we have the option of
asking the sender to re-transmit.

– If we know that a bit is in error, we can try to minimize the
damage – eg, if the bit is part of a pixel in an image, we can
replace the pixel with the average of nearby pixels.



Formal Definition of a Channel 4

• A channel is defined by

– An input alphabet, AX , with symbols a1, . . . , ar.
We will usually assume that the input alphabet is binary, with
AX = {0, 1}. (e.g. output of an arithmetic coder)

– An output alphabet, AY , with symbols called b1, . . . , bs.
This is also often binary, with AY = {0, 1}, but in general it can
be different from AX . (e.g. bits on a packet network)

– A description of how the output depends on the input.
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b1
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Channel

Channel Transition probabilities 5

•We will assume that the sequential correspondence
(synchronization) of input symbols with output symbols is always
known — there are no “insertions” or “deletions” of symbols.

•We will also assume that the channel is memoryless — each output
symbol is influenced only by the corresponding input symbol, not by
earlier input or output symbols.

• The behaviour of such a channel is defined by its transition
probabilities:

Qj|i = P (Y = bj |X = ai)

• These transition probabilities are fixed by the nature of the channel.
We just have to live with them.
They cannot be changed by what we put into the channel input or
how we read from the channel output.

The Binary Symmetric Channel (BSC) 6

• For the BSC, the input and output alphabets are both {0, 1}.

•With probability f , the symbol received is different from the symbol
transmitted. With probability 1 − f , the symbol is received
correctly. (eg old memory chips)

• The matrix of transition probabilities for the BSC is as follows:

Q = (Qj|i) =

[

1 − f f
f 1−f

]
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1

0

1
f
f

1−f

1−f

The Z Channel 7

• The Z Channel has input alphabet is {0, 1}, and output alphabet
{0, 1}, like the BSC.

• However, the Z channel is asymmetrical. The 0 symbol is always
transmitted correctly, but the 1 symbol is received incorrectly (as 0)
with probability f . (eg a mouse with a flakey button)

• The matrix of transition probabilities for the Z channel is as follows:

Q = (Qj|i) =

[

1 f
0 1−f

]

0

1

0

1
f

1−f

1



The Binary Erasure Channel (BEC) 8

• For the BEC, the input alphabet is {0, 1}, but the output alphabet
is {0, ?, 1}. The “?” output represents an “erasure” (corruption),
in which the transmitted symbol is lost, but the receiver knows it
was lost. (eg error correcting memory)

• An erasure happens with probability f ; otherwise, the symbol is
received correctly.

• The matrix of transition probabilities for the BEC is:

Q = (Qj|i) =





1−f 0
f f
0 1−f





0

1

0

11−f

1−f
?f

f

Channel Input Distribution 9

• Because we are designing the code that will feed into the channel,
we can choose what input symbols we feed into the channel.

•We might send raw symbols from some source, the output of a
data compression program applied to that source, or an
error-correcting code for either of these.

• For the moment, we’ll assume that the symbols we put in are
independent of each other, with some specified distribution:

pi = P (X = ai)

• Ultimate question: how can we choose these input probabilities so
that we make the most efficient use of the channel possible?

Deriving Some More Probabilities 10

• The input and the transition probabilities together define the
joint probability for any combination of channel input and output:

Rij = P (X =ai, Y =bj) = P (X =ai) P (Y =bj |X =ai)

= pi Qj|i

•We can now find the output probabilities:

qj = P (Y = bj) =

r
∑

i=1

Rij =

r
∑

i=1

pi Qj|i

• Finally, we get the backward probabilities:

Si|j = P (X =ai |Y =bj)

= P (X =ai, Y =bj)/P (Y =bj) = Rij/qj

• The backward probabilities give the situation from the receiver’s
point of view — given that I’ve received symbol bj, how likely is it
that the symbol sent was ai?

Input, Output, and Joint Entropies 11

• The amount of information being sent can be measured by the
input (source) entropy :

H(X) =

r
∑

i=1

pi log(1/pi) ; pi = P (X = ai)

• Similarly, the amount of “information” received (some of which
may actually be noise) is measured by the output entropy :

H(Y ) =

s
∑

j=1

qj log(1/qj) ; qj = P (Y = bj)

•We also have the joint entropy :

H(X, Y ) =

r
∑

i=1

s
∑

j=1

Rij log(1/Rij)

where Rij = P (X = ai, Y = bj). This is the information obtained
by an outside observer who sees both the input and the output.



Mutual Information 12

•We can now define the mutual
information between the input
and the output:

I(X ; Y ) = H(X)+H(Y )−H(X, Y )

H(X|Y)
H(Y|X)

I(X;Y)

H(X,Y)

H(X) H(Y)

•Mutual information is meant to represent the amount of information
that is being communicated from the sender to the receiver.

• This makes intuitive sense: The difference of H(X) + H(Y ) and
H(X, Y ) is the “overlap” in the knowledge of the sender and
receiver — due to information having been transmitted.

• But the real test of this definition is whether it leads to useful
theorems and insights.

Entropies of Conditional Distributions 13

• Suppose the channel output is the symbol bj.
The conditional distribution for the symbol that was transmitted,
given that bj was received is:

Si|j = P (X = ai |Y = bj) =
pi Qj|i

qj

• The receiver’s uncertainty about what was transmitted can be
measured by the entropy of this conditional distribution:

H(X |Y = bj) =
∑

i

Si|j log(1/Si|j)

• In general, this entropy is different for different received symbols.

• Note that this entropy depends on both the channel’s transition
probabilities, Qj|i, and on the input probabilities, pi.

Example: BSC 14

• Consider a BSC with probability 0.9 of correct transmission, and
with input probabilities of p0 = 0.2 and p1 = 0.8.

• Suppose a “0” is received. The conditional distribution for the
symbol transmitted is given by the backward probabilities:

S0|0 =
0.2 × 0.9

0.2 × 0.9 + 0.8 × 0.1
= 0.69

S1|0 =
0.8 × 0.1

0.2 × 0.9 + 0.8 × 0.1
= 0.31

• The binary entropy of this distribution is

H(X |Y = 0) = 0.69 log2(1/0.69) + 0.31 log2(1/0.31) = 0.89

• Compare with the input distribution’s entropy:

H(X) = 0.2 log2(1/0.2) + 0.8 log2(1/0.8) = 0.72

The entropy after receiving “0” is more than before receiving
anything! Does entropy always increase after receiving a symbol?

Example: BSC 15

• Continuing the example of a BSC with f = 0.1, p0 = 0.2, and
p1 = 0.8, we can calculate the conditional distribution for the input
given that “1” was received:

S0|1 =
0.2 × 0.1

0.2 × 0.1 + 0.8 × 0.9
= 0.027

S1|1 =
0.8 × 0.9

0.2 × 0.1 + 0.8 × 0.9
= 0.973

• From which we find that H(X |Y = 1) is

0.027 log2(1/0.027) + 0.973 log2(1/0.973) = 0.18

• Noting that q0 = 0.2× 0.9 + 0.8× 0.1 = 0.26, and hence q1 = 0.74,
we can compute the average conditional entropy of X given Y as:

H(X |Y ) = 0.26 × 0.89 + 0.74 × 0.18 = 0.36

which is less than H(X) = 0.72!



Conditional Entropy 16

• The conditional entropy for X given Y is the average entropy of
the conditional distribution of X given Y = b, averaging over
values for b:

H(X |Y ) =
∑

j

qj H(X |Y = bj)

where qj =
∑

i
pi Qj|i is the probability of bj.

• This is the uncertainty that the receiver has on average about the
input symbol, given knowledge of the output symbol.
We’ll see that it can’t be greater than H(X).

• Similarly, we can define

H(Y |X) =
∑

i

pi H(Y |X = ai) =
∑

i

pi

∑

j

Qj|i log(1/Qj|i)

• This is the average uncertainty that the sender has about what the
receiver received.

Joint and Conditional Entropies 17

•H(X |Y ) is how much more information we would (on average)
get from learning X, given that we already know Y .

• If we add H(Y ) to this, we ought to get the total amount of
information from knowing both X and Y – the joint entropy
H(X, Y ).

H(X,Y ) =
∑

i,j

Rij log(1/Rij) =
∑

i,j

qjSi|j log(1/(qjSi|j))

=
∑

i,j

qjSi|j [log(1/qj) + log(1/Si|j)]

=
∑

i,j

qjSi|j log(1/qj) +
∑

i,j

qjSi|j log(1/Si|j)

=
∑

j

qj log(1/qj)
∑

i

Si|j +
∑

j

qj

∑

i

Si|j log(1/Si|j)

= H(Y ) + H(X |Y )

Mutual Information Again 18

• The difference H(X) − H(X |Y ) is how much the receiver’s
uncertainty about the channel input decreases as a result of seeing
the channel output (on average).

• Intuitively, this is a measure of how much information the channel
is transmitting.

•We had previously measured this by the mutual information:

I(X ; Y ) = H(X) + H(Y ) − H(X, Y )

• Are these two measures the same? Yes, from

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y )

we can conclude that

I(X ; Y ) = H(X) + H(Y ) − H(X, Y )

= H(X) − H(X |Y )

= H(Y ) − H(Y |X)

Example: BSC 19

• For a BSC with f = 0.1, p0 = 0.2, p1 = 0.8, we found that

H(X |Y ) = 0.36

H(X) = 0.72

so that
I(X ; Y ) = H(X) − H(X |Y ) = 0.36

•We should get the same answer another way. Using q0 = 0.26 and
q1 = 0.74, as well as the symmetry of the transition probabilities:

H(Y ) = 0.26 log2(1/0.26) + 0.74 log2(1/0.74)

= 0.83

H(Y |X) = f log2(1/f ) + (1−f ) log2(1/(1−f ))

= 0.1 log2(1/0.1) + 0.9 log2(1/0.9)

= 0.47

I(X ; Y ) = H(Y ) − H(Y |X) = 0.36



Why Mutual Information is Non-Negative 20

I(X ; Y ) = H(X) + H(Y ) − H(X, Y )

=
∑

i

pi log(1/pi) +
∑

j

qj log(1/qj) −
∑

i,j

Rij log(1/Rij)

=
∑

i,j

Rij log(1/pi) +
∑

i,j

Rij log(1/qj) −
∑

i,j

Rij log(1/Rij)

=
∑

i,j

Rij log(1/(piqj)) −
∑

i,j

Rij log(1/Rij)

• If the input and output of the channel are independent, Rij = piqj,
and I(X ; Y ) is zero.

•Otherwise, I(X ; Y ) must be greater than zero – see Lecture 3 or
Section 2.6 of the text.


