
CSC310 – Information Theory Sam Roweis

Lecture 9:
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Reminder: Arithmetic Coding 1

• Represent a symbol sequence as a subinterval of [0, 1) by recursively
dividing the interval according to the probability of the next symbol.

• We encode this subinterval by transmitting a binary fraction that
represents a number inside the interval, and for which any
continuation would still lie in the interval.

• To avoid the need for extremely high
numerical precision, we double the
size of the subinterval during
encoding whenever it is contained
entirely within [0, .5) or [.5, 1) or
[.25, .75). If we do exactly the same
doubling during decoding we maintain
correctness.
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• Possible to implement using only fixed-point (scaled integer)
arithmetic.

History of Arithmetic Coding 2

• Elias — around 1960.

Seen as a mathematical curiosity.

• Pasco, Rissanen – 1976.

The beginnings of practicality.

• Rissanen, Langdon, Rubin, Jones – 1979.

Fully practical methods.

• Langdon, Witten/Neal/Cleary — 1980’s.

Popularization.

• Many more... (eg, Moffat/Neal/Witten)

Further refinements to the method.

Summary of Arithmetic Coding 3

• Arithmetic coding provides a practical way of encoding a source in
a very nearly optimal way.

• Even faster arithmetic coding methods that avoid multiplies and
divides have been devised.

•However: It’s not necessarily the best solution to every problem.
Sometimes Huffman coding is faster and almost as good. Other
codes may also be useful.

• Arithmetic coding is particularly useful for adaptive codes, in which
probabilities constantly change. These codes, which we will study
next, constantly update the table of cumulative frequencies as they
encode/decode.



Where Do the Probabilities Come From? 4

• So far, we’ve assumed that we “just know” the probabilities of the
symbols, p1, . . . , pI .
Note: The transmitter and the receiver must both know the same

probabilities.

•This isn’t realistic.

For instance, if we’re compressing black-and-white images, there’s
no reason to think we know beforehand the fraction of pixels in the
transmitted image that are black.

•But could we make a good guess?

That might be better than just assuming equal probabilities. Most
fax images are largely white, for instance. Guessing P (White) = 0.9
may usually be better than P (White) = 0.5.

The Penalty for Guessing Wrong. 5

• Suppose we use a code that would be optimal if the symbol
probabilities were q1, . . . , qI , but the real probabilities are
p1, . . . , pI . How much does this cost us?

• Assume we use large blocks or use arithmetic coding — so that the
code gets down to the entropy, given the assumed probabilities.

• We can compute the difference in expected code length between an
optimal code based on q1, . . . , qI and an optimal code based on the
real probabilities, p1, . . . , pI , as follows:

I∑

i=1

pi log(1/qi) −
I∑

i=1

pi log(1/pi) =

I∑

i=1

pi log(pi/qi)

• This is the relative entropy of {pi} and {qi}.
It can never be negative. (See Section 2.6 of MacKay’s book.)

Why Not Estimate the Probabilities
And Then Send Them With the Data? 6

• One way to handle unknown probabilities is
to have the transmitter estimate them, and then send these
probabilities along with the compressed data, so that the receiver
can uncompress the data correctly.

• Example: We might estimate the probabilitiy that a pixel in a
black-and-white image is black by the fraction of pixels in the
image we’re sending that are black.

•One problem: We need some code for sending the estimated
probabilities. How do we decide on that? We need to guess the
probabilities for the different probabilities...

Why This Can’t be Optimal 7

• This scheme may sometimes be a pragmatic solution, but it can’t
possibly be optimal, because the resulting code isn’t complete.

• In a complete code, all sequences of code bits are possible (up to
when the end of message is reached). A prefix code will not be
complete if some nodes in its tree have only one child.

• Suppose we send a 3-by-5 black-and-white image by first sending
the number of black pixels (0 to 15) and then the 15 pixels
themselves, as one block, using probabilities estimated from the
count sent.

• Some messages will not be possible, eg:

4 ◦ • • ◦ ◦
• • • • ◦
◦ ◦ • • •

This can’t happen, since the count of 4 is inconsistent with the
image that follows.



Idea: Adaptive Models Based on History So Far 8

• We can do better using an adaptive model,
which continually re-estimates probabilities using counts of symbols
in the earlier part of the message.

• We need to avoid giving any symbol zero probability, since its
“optimal” codeword length would then be log(1/0) = ∞.
One “kludge”: Just add one to all the counts.

• This is actually one of the methods that can be justified by the
statistical theory of Bayesian inference.

• Bayesian inference uses probability to represent uncertainty about
anything — not just which symbol will be sent next, but also what
the probabilities of the various symbols are.

Adapting Probabilities During Encoding 9

• Example:

We might encode the 107th pixel in a black-and-white image using
the count of how many of the previous 106 pixels are black.

• If 13 of these 106 pixels were black, we encode the 107th pixel using

P (Black) = (13 + 1)/(106 + 2) = 0.1308

• Changing probabilities like this is easy with arithmetic coding,
during encoding we simply subdivide the intervals according to the
current probabilities. During decoding we can recover these
probabilities as we reconstruct the symbols and so we can do the
same thing.

• This adaptive scheme is much harder to do with Huffman codes,
especially if we encode blocks of symbols.

Any Adaptive Model Assigns Probabilities
to Sequences of Symbols 10

• Any way of producing predictive probabilities for each symbol in
turn will also assign a probability to every sequence of symbols.

• We just multiply together the predictive probabilities as we go.

• For example, the string ”CAT.” has probability

P (X1 = ‘C’)

× P (X2 = ‘A’ |X1 = ‘C’)

× P (X3 = ‘T’ |X1 = ‘C’, X2 = ‘A’)

× P (X4 = ‘.’ |X1 = ‘C’, X2 = ‘A’, X3 = ‘T’)

where the probabilities above are the ones used to code each
individual symbol.

• With an optimal coding method, the number of bits used to encode
the entire sequence will be close to the log of one over its
probability.

Probabilities of Sequences w/ Laplace Model 11

• The general form of the “add one to all the counts” method uses
the following predictive distributions:

P (Xn = ai) =
1 + Number of earlier occurrences of ai

I + n − 1
where I is the size of the source alphabet.
This is called “Laplace’s Rule of Succession”.

• So the probability of a sequence of n symbols is

(I − 1)!

(I + n − 1)!

I∏

i=1

ni!

where ni is the number of times ai occurs in the sequence.

• It’s much easier to code one symbol at a time (using arithmetic
coding) than to encode a whole sequence at once, but we can see
from this what the model is really saying about which sequences are
more likely.


