
CSC310 – Information Theory Sam Roweis

Lecture 8:

Arithmetic Coding – Details

October 5, 2005

Stream Codes: Transmitting Bits as We Go 1

• The problem of needing high-precision arithmetic makes aritmetic
coding potentially impractical. We’ll try to solve it by transmitting
bits as soon as they are determined.

• Example: After looking at the first few symbols in our block, our
interval has been reduced to [0.625, 0.875) = [0.1012, 0.1112).

• Any number in this interval that we might eventually transmit will
start with a 1 bit. So we can transmit this bit immediately, without
even looking at what symbols come next!

• This scheme is called stream coding because we just receive an
incoming stream of source symbols and output bits of the encoding
as we compute them.

• There is no need for an explicit block length anymore! We are in
effect transmitting the entire message as a single block by specifying
(to adequate precision) the corresponding interval in [0, 1).

Expanding the Interval After Transmitting a Bit 2

•Once we transmit a bit that is determined by the current interval,
we can throw that bit away, and then expand the interval by
moving the “bit point” one place to the right and doubling.

• Example: Continuing from the previous slide, the interval
[0.625, 0.875) = [0.1012, 0.1112) results in transmission of a 1.
We then throw out the 1, and double the bounds, giving the
interval [0.0102, 0.1102).

• In fact, as soon as the interval shrinks to a width of less than one
half, we will transmit a bit and then double the interval size.

• Hopefully, expanding the interval will allow us to use numerical
representations of the bounds, u and v, that are of lower precision.

Picture Of How it Works 3

Suppose we are encoding symbols from the alphabet {a1, a2, a3, a4},
with probabilities 1/3, 1/6, 1/6, 1/3.
Here’s how the interval changes as we encode the message a4, a2, . . .

� � �
� �

� � �
� �

� � �
� � �

� �
� �

� � �
	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	

� �

a

a a

a

a

0
Transmit

1
Transmit

1
Transmit

Received Received

1

a

4

2

3

3

1

4

2

1

24 a

a

a

a

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

1/2

0

� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

Arithmetic Coding Without Blocks (ver 1.0) 4

1) Initialize interval [u, v) to u = 0 and v = 1.

2) For each source symbol, ai, in turn:
Compute r = v − u.

Let u = u + r
i−1
∑

j=1
pj. Let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2:
If u ≥ 1/2:

Transmit a 1 bit.
Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:
Transmit a 0 bit.
Let u = 2u and v = 2v.

3) Transmit enough final bits to specify a number in [u, v).

But wait... 5

Suppose we are encoding symbols from the alphabet {a1, a2, a3, a4},
with probabilities 1/3, 1/6, 1/6, 1/3.
Here’s how the interval changes as we encode the message a4, a2, . . .

� �
� �

� �
� �

� � �
� � �

� �
� �

� �
	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	

� �

a

a a

a

a

0
Transmit

1
Transmit

1
Transmit

Received Received

1

a

4

2

3

3

1

4

2

1

24 a

a

a

a

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

1/2

0

� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

Now it looks like we are stuck. The interval corresponding to a2 is still
less than one half in width (4/9), but we can’t transmit another bit yet.

Precision Might Still be a Problem... 6

•We hope that by transmitting bits early and expanding the interval,
we can avoid tiny intervals, requiring high precision to represent.

• Problem: What if the interval gets smaller and smaller, but it
always includes 1/2?

• For example, as we encode symbols, we might get intervals of:
[0.000002, 1.000002)
[0.010102, 0.110012)
[0.011012, 0.101002)
[0.011112, 0.100102)
· · ·

• Although the interval is getting smaller and smaller, we still can’t
tell whether the next bit to transmit is a 0 or a 1.

A Solution 7

•When a narrow interval straddles 1/2, it will have the form

[0.01xxx, 0.10xxx)

• So although we don’t know what the next it to transmit is, we do
know that the bit transmitted after the next will be the opposite.

•We can therefore expand the interval around the middle of the
range, remembering that the next bit output should be followed by
an opposite bit.

• If we need to do several such expansions, there will be several
opposite bits to output, but we will remember them all.

•We have to be a bit less ambitious, and transmit a bit only when
the interval size shrinks below one quarter, but that’s still OK in
terms of precision.

Arithmetic Coding Without Blocks (ver 1.1) 8

1) Initialize the interval [u, v) to u = 0 and v = 1.
Initialize the “opposite bit count” to c = 0.

2) For each source symbol, ai, in turn:
Compute r = v − u.

Let u = u + r
i−1
∑

j=1

pj. Let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2 or u ≥ 1/4 and v ≤ 3/4:
If u ≥ 1/2:

Transmit a 1 bit followed by c 0 bits. Set c to 0.
Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:
Transmit a 0 bit followed by c 1 bits. Set c to 0.
Let u = 2u and v = 2v.

If u ≥ 1/4 and v ≤ 3/4:
Set c to c + 1.
Let u = 2(u−1/4) and v = 2(v−1/4).

3) Transmit enough final bits to specify a number in [u, v).

What Have We Gained? 9

• By expanding the interval in this way, we ensure that the size of the
(expanded) interval, v − u, will always be at least 1/4.

•We can now represent u and v with a fixed amount of precision —
we don’t need more precision for longer messages.

•We will use a fixed point (scaled integer) representation for u & v.

•Why not floating point?

– Fixed point arithmetic is faster on most machines.

– Fixed point arithmetic is well defined. Floating point arithmetic
may vary slightly from machine to machine. The effect? Machine
B might not correctly decode a file encoded on Machine A!

Quantized Symbol Probabilities 10

• To completely do away with floating point operations, we need to
represent the symbol probabilities as rational fractions with large
denominators (to give sufficient precision).

•We’ll estimated the probabilities of symbols a1, . . . , ai using the
fractions

pi = fi /
I
∑

j=1
fj

(with all fi > 0).

For arithmetic coding, it’s convenient to pre-compute the
cumulative frequencies

Fi =
i

∑

j=1
fj

We define F0 = 0, and use T for the total (denominator) FI . We
will assume that T < 2h, so the fi take no more than h bits.

Precision of the Coding Interval 11

• The ends of the coding interval will be represented by m-bit
integers. The integer bounds u and v represent the interval

[

u× 2−m, (v+1)× 2−m)

(The addition of 1 to v allows the upper bound to be 1 without the
need to use m+1 bits to represent v.)

• The received message will be represented as an m-bit integer, t,
plus further bits not yet read.

•With these representations, the arithmetic performed will never
produce a result bigger than m + h bits.

Encoding Using Integer Arithmetic 12

u← 0, v ← 2m − 1, c← 0
For each source symbol, ai, in turn:

r ← v − u + 1
v ← u + b(r ∗ Fi) / Tc − 1
u← u + b(r ∗ Fi−1) / Tc
While u ≥ 2m/2 or v < 2m/2 or u ≥ 2m/4 and v < 2m ∗ 3/4:

If u ≥ 2m/2:
Transmit a 1 bit followed by c 0 bits
c← 0
u← 2 ∗ (u− 2m/2), v ← 2 ∗ (v − 2m/2) + 1

If v < 2m/2:
Transmit a 0 bit followed by c 1 bits
c← 0
u← 2 ∗ u, v ← 2 ∗ v + 1

If u ≥ 2m/4 and v < 2m ∗ 3/4:
c← c + 1
u← 2 ∗ (u− 2m/4), v ← 2 ∗ (v − 2m/4) + 1

Transmit a few final bits to specify a point in the interval
If u < 2m/4: Transmit a 0 bit followed by c 1 bits. Then transmit a 1 bit
Else: Transmit a 1 bit followed by c 0 bits. Then transmit a 0 bit.

Precision Required 13

• For this procedure to work properly, the loop that expands the
interval must terminate. This requires that the interval never shrink
to nothing — ie, we must always have v ≥ u.

• This will be guaranteed as long as

b(r ∗ Fi) / T c > b(r ∗ Fi−1) / T c

This will be so as long as fi ≥ 1 (and hence Fi ≥ Fi−1 + 1) and
r ≥ T .

• The expansion of the interval guarantees that r ≥ 2m/4 + 1.

• So the procedure will work as long as T ≤ 2m/4 + 1. If our symbol
counts are bigger than this, we have to scale them down (or use
more precise arithmetic, with a bigger m).

• However, to obtain near-optimal coding, T should be a fair amount
less than 2m/4 + 1.

Decoding Using Integer Arithmetic 14

u← 0, v ← 2m − 1
t← first m bits of the received message
Until last symbol decoded:

r ← v − u + 1
w ← b((t− u + 1) ∗ T − 1) / rc
Find i such that Fi−1 ≤ w < Fi

Output ai as the next decoded symbol
v ← u + b(r ∗ Fi) / Tc − 1
u← u + b(r ∗ Fi−1) / Tc
While u ≥ 2m/2 or v < 2m/2 or u ≥ 2m/4 and v < 2m ∗ 3/4:

If u ≥ 2m/2:
u← 2 ∗ (u− 2m/2), v ← 2 ∗ (v − 2m/2) + 1
t← 2 ∗ (t− 2m/2) + next message bit

If v < 2m/2:
u← 2 ∗ u, v ← 2 ∗ v + 1
t← 2 ∗ t + next message bit

If u ≥ 2m/4 and v < 2m ∗ 3/4:
u← 2 ∗ (u− 2m/4), v ← 2 ∗ (v − 2m/4) + 1
t← 2 ∗ (t− 2m/4) + next message bit

Proving That the Decoder Finds the Right Symbol 15

• To show this, we need to show that if

Fi−1 ≤ b((t− u + 1) ∗ T − 1) / rc < Fi

then

u + b(r ∗ Fi−1) / T c ≤ t ≤ u + b(r ∗ Fi) / T c − 1

• This can be proved as follows:

Fi−1 ≤ b((t− u + 1) ∗ T − 1) / rc ≤ ((t− u + 1) ∗ T − 1) / r

⇒ r ∗ Fi−1 / T ≤ t− u + 1− 1/T

⇒ u + b(r ∗ Fi−1) / Tc ≤ u + (t− u) = t

Fi > b((t− u + 1) ∗ T − 1) / rc

⇒ Fi ≥ b((t− u + 1) ∗ T − 1) / rc + 1

⇒ Fi ≥ ((t− u + 1) ∗ T − 1) / r − (r − 1)/r + 1

⇒ r ∗ Fi / T ≥ t− u + 1− 1/T − (r − 1)/T + r/T

⇒ r ∗ Fi / T ≥ t− u + 1

⇒ u + b(r ∗ Fi) / Tc − 1 ≥ t

Summary 16

• Arithmetic coding provides a practical way of encoding a source in
a very nearly optimal way.

• Faster arithmetic coding methods that avoid multiplies and divides
have been devised.

•However: It’s not necessarily the best solution to every problem.
Sometimes Huffman coding is faster and almost as good. Other
codes may also be useful.

• Arithmetic coding is particularly useful for adaptive codes, in which
probabilities constantly change. We just update the table of
cumulative frequencies as we go.

History of Arithmetic Coding 17

• Elias — around 1960.

Seen as a mathematical curiosity.

• Pasco, Rissanen – 1976.

The beginnings of practicality.

• Rissanen, Langdon, Rubin, Jones – 1979.

Fully practical methods.

• Langdon, Witten/Neal/Cleary — 1980’s.

Popularization.

•Many more... (eg, Moffat/Neal/Witten)

Further refinements to the method.

