Lecture 8:

Arithmetic Coding - Details

Expanding the Interval After Transmitting a Bit 2

- Once we transmit a bit that is determined by the current interval, we can throw that bit away, and then expand the interval by moving the "bit point" one place to the right and doubling.
- Example: Continuing from the previous slide, the interval $[0.625,0.875)=\left[0.101_{2}, 0.111_{2}\right)$ results in transmission of a 1 . We then throw out the 1 , and double the bounds, giving the interval $\left[0.010_{2}, 0.110_{2}\right)$.
- In fact, as soon as the interval shrinks to a width of less than one half, we will transmit a bit and then double the interval size.
- Hopefully, expanding the interval will allow us to use numerical representations of the bounds, u and v, that are of lower precision.
October 5, 2005
- The problem of needing high-precision arithmetic makes aritmetic coding potentially impractical. We'll try to solve it by transmitting bits as soon as they are determined.
- Example: After looking at the first few symbols in our block, our interval has been reduced to $[0.625,0.875)=\left[0.101_{2}, 0.111_{2}\right)$.
- Any number in this interval that we might eventually transmit will start with a 1 bit. So we can transmit this bit immediately, without even looking at what symbols come next!
- This scheme is called stream coding because we just receive an incoming stream of source symbols and output bits of the encoding as we compute them.
- There is no need for an explicit block length anymore! We are in effect transmitting the entire message as a single block by specifying (to adequate precision) the corresponding interval in $[0,1$).

Suppose we are encoding symbols from the alphabet $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, with probabilities $1 / 3,1 / 6,1 / 6,1 / 3$.
Here's how the interval changes as we encode the message a_{4}, a_{2}, \ldots

1) Initialize interval $[u, v)$ to $u=0$ and $v=1$.
2) For each source symbol, a_{i}, in turn:

Compute $r=v-u$.
We hope that by transmitting bits early and expanding the interval we can avoid tiny intervals, requiring high precision to represent.

Let $u=u+r \sum_{j=1}^{i-1} p_{j}$. Let $v=u+r p_{i}$.
While $u \geq 1 / 2$ or $v \leq 1 / 2$:
If $u \geq 1 / 2$:
Transmit a 1 bit.
Let $u=2(u-1 / 2)$ and $v=2(v-1 / 2)$.
If $v \leq 1 / 2$:
Transmit a 0 bit.

$$
\text { Let } u=2 u \text { and } v=2 v \text {. }
$$

3) Transmit enough final bits to specify a number in $[u, v)$.

But wait... 5
Suppose we are encoding symbols from the alphabet $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, with probabilities $1 / 3,1 / 6,1 / 6,1 / 3$.
Here's how the interval changes as we encode the message a_{4}, a_{2}, \ldots

Now it looks like we are stuck. The interval corresponding to a_{2} is still less than one half in width (4/9), but we can't transmit another bit yet.

A Solution

- When a narrow interval straddles $1 / 2$, it will have the form

$$
[0.01 x x x, 0.10 x x x)
$$

- So although we don't know what the next it to transmit is, we do know that the bit transmitted after the next will be the opposite.
- We can therefore expand the interval around the middle of the range, remembering that the next bit output should be followed by an opposite bit.
- If we need to do several such expansions, there will be several opposite bits to output, but we will remember them all.
- We have to be a bit less ambitious, and transmit a bit only when the interval size shrinks below one quarter, but that's still OK in terms of precision.

1) Initialize the interval $[u, v)$ to $u=0$ and $v=1$.

Initialize the "opposite bit count" to $c=0$.
2) For each source symbol, a_{i}, in turn:

Compute $r=v-u$.
Let $u=u+r \sum_{j=1}^{i-1} p_{j}$. Let $v=u+r p_{i}$.
While $u \geq 1 / 2$ or $v \leq 1 / 2$ or $u \geq 1 / 4$ and $v \leq 3 / 4$:
If $u \geq 1 / 2$:
Transmit a 1 bit followed by $c 0$ bits. Set c to 0 .
Let $u=2(u-1 / 2)$ and $v=2(v-1 / 2)$.
If $v \leq 1 / 2$:
Transmit a 0 bit followed by $c 1$ bits. Set c to 0 .
Let $u=2 u$ and $v=2 v$.
If $u \geq 1 / 4$ and $v \leq 3 / 4$:
Set c to $c+1$.
Let $u=2(u-1 / 4)$ and $v=2(v-1 / 4)$.
3) Transmit enough final bits to specify a number in $[u, v)$.

- To completely do away with floating point operations, we need to represent the symbol probabilities as rational fractions with large denominators (to give sufficient precision).
- We'll estimated the probabilities of symbols a_{1}, \ldots, a_{i} using the fractions

$$
p_{i}=f_{i} / \sum_{j=1}^{I} f_{j}
$$

(with all $f_{i}>0$).
For arithmetic coding, it's convenient to pre-compute the cumulative frequencies

$$
F_{i}=\sum_{j=1}^{i} f_{j}
$$

We define $F_{0}=0$, and use T for the total (denominator) F_{I}. We will assume that $T<2^{h}$, so the f_{i} take no more than h bits.

- By expanding the interval in this way, we ensure that the size of the (expanded) interval, $v-u$, will always be at least $1 / 4$.
- We can now represent u and v with a fixed amount of precision we don't need more precision for longer messages.
- We will use a fixed point (scaled integer) representation for $u \& v$.
- Why not floating point?
- Fixed point arithmetic is faster on most machines.
- Fixed point arithmetic is well defined. Floating point arithmetic may vary slightly from machine to machine. The effect? Machine B might not correctly decode a file encoded on Machine A!
- The ends of the coding interval will be represented by m-bit integers. The integer bounds u and v represent the interval

$$
\left[u \times 2^{-m},(v+1) \times 2^{-m}\right)
$$

(The addition of 1 to v allows the upper bound to be 1 without the need to use $m+1$ bits to represent v.)

- The received message will be represented as an m-bit integer, t, plus further bits not yet read.
- With these representations, the arithmetic performed will never produce a result bigger than $m+h$ bits.
$u \leftarrow 0, v \leftarrow 2^{m}-1, c \leftarrow 0$
For each source symbol, a_{i}, in turn:
$r \leftarrow v-u+1$
$v \leftarrow u+\left\lfloor\left(r * F_{i}\right) / T\right\rfloor-1$
$u \leftarrow u+\left\lfloor\left(r * F_{i-1}\right) / T\right\rfloor$
While $u \geq 2^{m} / 2$ or $v<2^{m} / 2$ or $u \geq 2^{m} / 4$ and $v<2^{m} * 3 / 4$:
If $u \geq 2^{m} / 2$.
Transmit a 1 bit followed by $c 0$ bits
$c \leftarrow 0$
$u \leftarrow 2 *\left(u-2^{m} / 2\right), v \leftarrow 2 *\left(v-2^{m} / 2\right)+1$
If $v<2^{m} / 2$:
Transmit a 0 bit followed by $c 1$ bits
$c \leftarrow 0$
$u \leftarrow 2 * u, v \leftarrow 2 * v+1$
If $u \geq 2^{m} / 4$ and $v<2^{m} * 3 / 4$
$c \leftarrow c+1$
$u \leftarrow 2 *\left(u-2^{m} / 4\right), v \leftarrow 2 *\left(v-2^{m} / 4\right)+1$
Transmit a few final bits to specify a point in the interval
If $u<2^{m} / 4$: Transmit a 0 bit followed by $c 1$ bits. Then transmit a 1 bit
Else: Transmit a 1 bit followed by $c 0$ bits. Then transmit a 0 bit.
$u \leftarrow 0, v \leftarrow 2^{m}-1$
$t \leftarrow$ first m bits of the received message
Until last symbol decoded:

$$
r \leftarrow v-u+1
$$

$$
w \leftarrow\lfloor((t-u+1) * T-1) / r\rfloor
$$

Find i such that $F_{i-1} \leq w<F_{i}$
Output a_{i} as the next decoded symbol
$v \leftarrow u+\left\lfloor\left(r * F_{i}\right) / T\right\rfloor-1$
$u \leftarrow u+\left\lfloor\left(r * F_{i-1}\right) / T\right\rfloor$
While $u \geq 2^{m} / 2$ or $v<2^{m} / 2$ or $u \geq 2^{m} / 4$ and $v<2^{m} * 3 / 4$:
If $u \geq 2^{m} / 2$:
$u \leftarrow 2 *\left(u-2^{m} / 2\right), v \leftarrow 2 *\left(v-2^{m} / 2\right)+1$
$t \leftarrow 2 *\left(t-2^{m} / 2\right)+$ next message bit
If $v<2^{m} / 2$:
$u \leftarrow 2 * u, v \leftarrow 2 * v+1$
$t \leftarrow 2 * t+$ next message bit
If $u \geq 2^{m} / 4$ and $v<2^{m} * 3 / 4$:
$u \leftarrow 2 *\left(u-2^{m} / 4\right), v \leftarrow 2 *\left(v-2^{m} / 4\right)+1$
$t \leftarrow 2 *\left(t-2^{m} / 4\right)+$ next message bit

- For this procedure to work properly, the loop that expands the interval must terminate. This requires that the interval never shrink to nothing - ie, we must always have $v \geq u$.
- This will be guaranteed as long as

$$
\left\lfloor\left(r * F_{i}\right) / T\right\rfloor>\left\lfloor\left(r * F_{i-1}\right) / T\right\rfloor
$$

This will be so as long as $f_{i} \geq 1$ (and hence $F_{i} \geq F_{i-1}+1$) and $r \geq T$.

- The expansion of the interval guarantees that $r \geq 2^{m} / 4+1$.
- So the procedure will work as long as $T \leq 2^{m} / 4+1$. If our symbol counts are bigger than this, we have to scale them down (or use more precise arithmetic, with a bigger m)
- However, to obtain near-optimal coding, T should be a fair amount less than $2^{m} / 4+1$.

Proving That the Decoder Finds the Right Symbol 15

- To show this, we need to show that if

$$
F_{i-1} \leq\lfloor((t-u+1) * T-1) / r\rfloor<F_{i}
$$

then

$$
u+\left\lfloor\left(r * F_{i-1}\right) / T\right\rfloor \leq t \leq u+\left\lfloor\left(r * F_{i}\right) / T\right\rfloor-1
$$

- This can be proved as follows:
$F_{i-1} \leq\lfloor((t-u+1) * T-1) / r\rfloor \leq((t-u+1) * T-1) / r$ $\Rightarrow r * F_{i-1} / T \leq t-u+1-1 / T$
$\Rightarrow u+\left\lfloor\left(r * F_{i-1}\right) / T\right\rfloor \leq u+(t-u)=t$
$F_{i}>\lfloor((t-u+1) * T-1) / r\rfloor$
$\Rightarrow F_{i} \geq\lfloor((t-u+1) * T-1) / r\rfloor+1$
$\Rightarrow F_{i} \geq((t-u+1) * T-1) / r-(r-1) / r+1$
$\Rightarrow r * F_{i} / T \geq t-u+1-1 / T-(r-1) / T+r / T$
$\Rightarrow r * F_{i} / T \geq t-u+1$
$\Rightarrow u+\left\lfloor\left(r * F_{i}\right) / T\right\rfloor-1 \geq t$
- Arithmetic coding provides a practical way of encoding a source in a very nearly optimal way.
- Faster arithmetic coding methods that avoid multiplies and divides have been devised.
- However: It's not necessarily the best solution to every problem. Sometimes Huffman coding is faster and almost as good. Other codes may also be useful.
- Arithmetic coding is particularly useful for adaptive codes, in which probabilities constantly change. We just update the table of cumulative frequencies as we go.
- Elias - around 1960.

Seen as a mathematical curiosity.

- Pasco, Rissanen - 1976.

The beginnings of practicality.

- Rissanen, Langdon, Rubin, Jones - 1979.

Fully practical methods.

- Langdon, Witten/Neal/Cleary - 1980's.

Popularization.

- Many more... (eg, Moffat/Neal/Witten)

Further refinements to the method.

