CSC310 – Information Theory Sam Roweis	 EXPANDING THE INTERVAL AFTER TRANSMITTING A BIT 2 Once we transmit a bit that is determined by the current interval, we can throw that bit away, and then expand the interval by
Lecture 8:	moving the "bit point" one place to the right and doubling. • Example: Continuing from the previous slide, the interval $[0.625, 0.875) = [0.101_2, 0.111_2)$ results in transmission of a 1. We then throw out the 1, and double the bounds, giving the interval $[0.010_2, 0.110_2)$.
Arithmetic Coding – Details	 In fact, as soon as the interval shrinks to a width of <i>less than one</i> half, we will transmit a bit and then double the interval size.
	• Hopefully, expanding the interval will allow us to use numerical representations of the bounds, <i>u</i> and <i>v</i> , that are of lower precision.
October 5, 2005	
STREAM CODES: TRANSMITTING BITS AS WE GO 1	Picture Of How it Works 3
The problem of needing high-precision arithmetic makes aritmetic coding potentially impractical. We'll try to solve it by transmitting bits as soon as they are determined.	Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$, $1/6$, $1/6$, $1/3$. Here's how the interval changes as we encode the message a_4, a_2, \ldots
Example: After looking at the first few symbols in our block, our interval has been reduced to $[0.625, 0.875) = [0.101_2, 0.111_2)$. <i>Any</i> number in this interval that we might eventually transmit will start with a 1 bit. So we can transmit this bit immediately, without even looking at what symbols come next!	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array}$

aı

 a_4

Transmit Transmit

0

1

Transmit

1

- This scheme is called *stream coding* because we just receive an incoming stream of source symbols and output bits of the encoding as we compute them.
- There is no need for an explicit block length anymore! We are in effect transmitting the entire message as a single block by specifying (to adequate precision) the corresponding interval in [0, 1).

ARITHMETIC CODING WITHOUT BLOCKS (VER 1.0) 4	Precision Might Still be a Problem	(
1) Initialize interval $[u, v)$ to $u = 0$ and $v = 1$.	• We hope that by transmitting bits early and expanding the inte	rval
2) For each source symbol, a_i , in turn:	we can avoid tiny intervals, requiring high precision to represen	τ.
Compute $r = v - u$.	• <i>Problem:</i> What if the interval gets smaller and smaller, <i>but it always includes 1/2?</i>	
Let $u = u + r \sum_{i=1}^{n} p_i$. Let $v = u + rp_i$.	• For example, as we encode symbols, we might get intervals of:	
While $u \ge 1/2$ or $v \le 1/2$:	$[0.00000_2, 1.00000_2)$	
If $u \ge 1/2$:	$[0.01010_2, 0.11001_2)$	
Iransmit a 1 bit. Let $u = 2(u - 1/2)$ and $u = 2(u - 1/2)$	$[0.01101_2, 0.10100_2)$	
If $v < 1/2$:		
Transmit a 0 bit.	• Although the interval is getting smaller and smaller, we still ca	n't
Let $u = 2u$ and $v = 2v$.	tell whether the next bit to transmit is a 0 or a 1.	
BUT WAIT 5	A Solution	
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$ $1/6$ $1/6$ $1/3$	• When a narrow interval straddles 1/2, it will have the form	
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$, $1/6$, $1/6$, $1/3$. Here's how the interval changes as we encode the message a_4, a_2, \ldots	• When a narrow interval straddles 1/2, it will have the form $[0.01xxx, 0.10xxx)$	
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$, $1/6$, $1/6$, $1/3$. Here's how the interval changes as we encode the message a_4, a_2, \ldots $0 \xrightarrow{\text{Received} a_4} a_2$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<i>do</i> e.
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$, $1/6$, $1/6$, $1/3$. Here's how the interval changes as we encode the message a_4, a_2, \ldots $Received$ $Received$ a_2 a_1 a_2 a_1 a_2 a_3 a_4 a_2 a_4 a_4 a_5 a_5 a_4 a_5 a_5 a_4 a_5 a_5 a_6	 A SOLUTION When a narrow interval straddles 1/2, it will have the form [0.01xxx, 0.10xxx) So although we don't know what the next it to transmit is, we know that the bit transmitted after the next will be the opposite. We can therefore expand the interval around the <i>middle</i> of the range, remembering that the next bit output should be followed an opposite bit. 	<i>do</i> e. I by
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$, $1/6$, $1/6$, $1/3$. Here's how the interval changes as we encode the message a_4, a_2, \ldots $Received \qquad Received \qquad a_2 \qquad a_3 \qquad a_4$	 A SOLUTION When a narrow interval straddles 1/2, it will have the form [0.01xxx, 0.10xxx) So although we don't know what the next it to transmit is, we know that the bit transmitted after the next will be the opposite. We can therefore expand the interval around the <i>middle</i> of the range, remembering that the next bit output should be followed an opposite bit. If we need to do several such expansions, there will be several opposite bits to output, but we will remember them all. 	<i>do</i> e.
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities 1/3, 1/6, 1/6, 1/3. Here's how the interval changes as we encode the message a_4, a_2, \ldots $0 \qquad \qquad$	 A SOLUTION When a narrow interval straddles 1/2, it will have the form [0.01xxx, 0.10xxx) So although we don't know what the next it to transmit is, we know that the bit transmitted after the next will be the opposite. We can therefore expand the interval around the <i>middle</i> of the range, remembering that the next bit output should be followed an opposite bit. If we need to do several such expansions, there will be several opposite bits to output, but we will remember them all. We have to be a bit less ambitious, and transmit a bit only wh the interval size shrinks below <i>one quarter</i>, but that's still OK it terms of precision. 	do e. I by en n
BUT WAIT 5 Suppose we are encoding symbols from the alphabet $\{a_1, a_2, a_3, a_4\}$, with probabilities $1/3$, $1/6$, $1/6$, $1/3$. Here's how the interval changes as we encode the message a_4 , a_2 , $u = \begin{bmatrix} \frac{1}{a_1} & \frac{1}{a_2} & \frac{1}{a_3} & \frac{1}{a_2} & \frac{1}{a_3} & \frac{1}{a_2} & \frac{1}{a_3} & \frac{1}{a_2} & \frac{1}{a_3} & \frac{1}$	 A SOLUTION When a narrow interval straddles 1/2, it will have the form [0.01xxx, 0.10xxx) So although we don't know what the next it to transmit is, we know that the bit transmitted after the next will be the opposite. We can therefore expand the interval around the <i>middle</i> of the range, remembering that the next bit output should be followed an opposite bit. If we need to do several such expansions, there will be several opposite bits to output, but we will remember them all. We have to be a bit less ambitious, and transmit a bit only wh the interval size shrinks below <i>one quarter</i>, but that's still OK iterms of precision. 	do re. I b en

ARITHMETIC CODING WITHOUT BLOCKS (VER 1.1) 8

- 1) Initialize the interval [u, v) to u = 0 and v = 1. Initialize the "opposite bit count" to c = 0.
- 2) For each source symbol, a_i , in turn:

 $\begin{array}{l} \mbox{Compute } r=v-u.\\ \mbox{Let } u=u+r\sum_{j=1}^{i-1}p_j. \ \mbox{Let } v=u+rp_i.\\ \mbox{While } u\geq 1/2 \ \mbox{or } v\leq 1/2 \ \mbox{or } u\geq 1/4 \ \mbox{and } v\leq 3/4:\\ \mbox{If } u\geq 1/2:\\ \mbox{Transmit } a \ 1 \ \mbox{bit followed by } c \ \mbox{0 bits. Set } c \ \mbox{to } 0.\\ \mbox{Let } u=2(u-1/2) \ \mbox{and } v=2(v-1/2).\\ \mbox{If } v\leq 1/2:\\ \mbox{Transmit } a \ \mbox{0 bit followed by } c \ \mbox{1 bits. Set } c \ \mbox{to } 0.\\ \mbox{Let } u=2u \ \mbox{and } v=2v.\\ \mbox{If } u\geq 1/4 \ \mbox{and } v\leq 3/4:\\ \mbox{Set } c \ \mbox{to } c+1.\\ \mbox{Let } u=2(u-1/4) \ \mbox{and } v=2(v-1/4).\\ \end{array}$

- 3) Transmit enough final bits to specify a number in [u, v).
 - WHAT HAVE WE GAINED?

9

- By expanding the interval in this way, we ensure that the size of the (expanded) interval, v u, will always be at least 1/4.
- We can now represent u and v with a *fixed* amount of precision we *don't* need more precision for longer messages.
- \bullet We will use a *fixed point* (scaled integer) representation for u & v.
- Why not floating point?
 - Fixed point arithmetic is faster on most machines.
 - Fixed point arithmetic is well defined. Floating point arithmetic may vary slightly from machine to machine. The effect? Machine B might not correctly decode a file encoded on Machine A!

QUANTIZED SYMBOL PROBABILITIES

- To completely do away with floating point operations, we need to represent the symbol probabilities as rational fractions with large denominators (to give sufficient precision).
- \bullet We'll estimated the probabilities of symbols a_1,\ldots,a_i using the fractions

$$p_i = f_i / \sum_{j=1}^{I} f_j$$

(with all $f_i > 0$).

For arithmetic coding, it's convenient to pre-compute the *cumulative frequencies*

$$F_i = \sum_{j=1}^i f_j$$

We define $F_0 = 0$, and use T for the total (denominator) F_I . We will assume that $T < 2^h$, so the f_i take no more than h bits.

PRECISION OF THE CODING INTERVAL

11

 \bullet The ends of the coding interval will be represented by $m\mbox{-bit}$ integers. The integer bounds u and v represent the interval

 $[u \times 2^{-m}, (v+1) \times 2^{-m})$

(The addition of 1 to v allows the upper bound to be 1 without the need to use m+1 bits to represent v.)

- The received message will be represented as an m-bit integer, t, plus further bits not yet read.
- With these representations, the arithmetic performed will never produce a result bigger than m + h bits.

Encoding Using Integer Arithmetic

 $u \leftarrow 0, v \leftarrow 2^m - 1, c \leftarrow 0$ For each source symbol, a_i , in turn: $r \leftarrow v - u + 1$ $v \leftarrow u + \left| \left(r * F_i \right) / T \right| - 1$ $u \leftarrow u + \left\lfloor \left(r * F_{i-1}\right) / T \right\rfloor$ While $u \ge 2^m/2$ or $v < 2^m/2$ or $u \ge 2^m/4$ and $v < 2^m * 3/4$: If $u > 2^m/2$: Transmit a 1 bit followed by c 0 bits $c \leftarrow 0$ $u \leftarrow 2 * (u - 2^m/2), v \leftarrow 2 * (v - 2^m/2) + 1$ If $v < 2^m/2$: Transmit a 0 bit followed by c 1 bits $c \leftarrow 0$ $u \leftarrow 2 * u, v \leftarrow 2 * v + 1$ If $u \ge 2^m/4$ and $v < 2^m * 3/4$: $c \leftarrow c + 1$ $u \leftarrow 2 * (u - 2^m/4), v \leftarrow 2 * (v - 2^m/4) + 1$

Transmit a few final bits to specify a point in the interval If $u < 2^m/4$: Transmit a 0 bit followed by c 1 bits. Then transmit a 1 bit Else: Transmit a 1 bit followed by c 0 bits. Then transmit a 0 bit.

PRECISION REQUIRED

13

12

- For this procedure to work properly, the loop that expands the interval must terminate. This requires that the interval never shrink to nothing ie, we must always have $v \ge u$.
- This will be guaranteed as long as

 $\lfloor (r * F_i) \, / \, T \rfloor \; > \; \lfloor (r * F_{i-1}) \, / \, T \rfloor$

This will be so as long as $f_i \ge 1$ (and hence $F_i \ge F_{i-1} + 1$) and $r \ge T$.

- The expansion of the interval guarantees that $r \ge 2^m/4 + 1$.
- So the procedure will work as long as $T \le 2^m/4 + 1$. If our symbol counts are bigger than this, we have to scale them down (or use more precise arithmetic, with a bigger m).
- \bullet However, to obtain near-optimal coding, T should be a fair amount less than $2^m/4+1.$

PROVING THAT THE DECODER FINDS THE RIGHT SYMBOL 15

DECODING USING INTEGER ARITHMETIC

While $u \ge 2^m/2$ or $v < 2^m/2$ or $u \ge 2^m/4$ and $v < 2^m * 3/4$:

 $u \leftarrow 2 * (u - 2^m/2), v \leftarrow 2 * (v - 2^m/2) + 1$

 $u \leftarrow 2 * (u - 2^m/4), v \leftarrow 2 * (v - 2^m/4) + 1$

 $t \leftarrow 2 * (t - 2^m/4) + \text{next message bit}$

 $t \leftarrow 2 * (t - 2^m/2) + \text{next message bit}$

 \bullet To show this, we need to show that if

$$F_{i-1} \leq \left\lfloor \left(\left(t-u+1\right) * T - 1 \right) / r \right\rfloor \ < \ F_i$$

then

 $u \leftarrow 0, v \leftarrow 2^m - 1$

 $r \leftarrow v - u + 1$

If $u > 2^m/2$:

If $v < 2^m/2$:

Until last symbol decoded:

 $t \leftarrow \text{first } m \text{ bits of the received message}$

 $w \leftarrow |((t - u + 1) * T - 1) / r|$

Find *i* such that $F_{i-1} \le w \le F_i$

 $u \leftarrow 2 * u, v \leftarrow 2 * v + 1$

 $t \leftarrow 2 * t + \text{next message bit}$

If $u > 2^m/4$ and $v < 2^m * 3/4$:

 $v \leftarrow u + \left\lfloor \left(r * F_i\right) / T \right\rfloor - 1$

 $u \leftarrow u + \left\lfloor \left(r * F_{i-1}\right) / T \right\rfloor$

Output a_i as the next decoded symbol

$$u + \left\lfloor \left(r \ast F_{i-1}\right) / T \right\rfloor \leq t \leq u + \left\lfloor \left(r \ast F_{i}\right) / T \right\rfloor - 1$$

• This can be proved as follows:

```
\begin{array}{l} F_{i-1} \ \leq \ \left\lfloor \left( \left( t-u+1 \right) *T-1 \right) /r \right\rfloor \ \leq \ \left( \left( t-u+1 \right) *T-1 \right) /r \\ \Rightarrow \ r *F_{i-1} /T \ \leq \ t-u+1-1/T \\ \Rightarrow \ u + \left\lfloor \left( r *F_{i-1} \right) /T \right\rfloor \ \leq \ u + \left( t-u \right) \ = \ t \\ F_i \ > \ \left\lfloor \left( \left( t-u+1 \right) *T-1 \right) /r \right\rfloor \\ \Rightarrow \ F_i \ \geq \ \left\lfloor \left( \left( t-u+1 \right) *T-1 \right) /r \right\rfloor \ + \ 1 \\ \Rightarrow \ F_i \ \geq \ \left( \left( t-u+1 \right) *T-1 \right) /r \ - \ \left( r-1 \right) /r \ + \ 1 \\ \Rightarrow \ r *F_i /T \ \geq \ t-u+1-1/T \ - \ \left( r-1 \right) /T \ + \ r/T \\ \Rightarrow \ r *F_i /T \ \geq \ t-u+1 \\ \Rightarrow \ u + \left\lfloor \left( r *F_i \right) /T \right\rfloor - 1 \ \geq \ t \end{array}
```

14

SUMMARY	16
• Arithmetic coding provides a practical way of anodi	
a very nearly optimal way.	ig a source in
• Faster arithmetic coding methods that avoid multiplic have been devised.	es and divides
• However: It's not necessarily the best solution to e Sometimes Huffman coding is faster and almost as go codes may also be useful.	<i>very</i> problem. ood. Other
• Arithmetic coding is particularly useful for <i>adaptive</i> constantly change. We just update the tricumulative frequencies as we go.	odes, in which table of
History of Arithmetic Coding	17
e Elias around 1060	
• Lilas — around 1900. Seen as a mathematical curiosity.	
• Pasco, Rissanen – 1976.	
The beginnings of practicality.	
• Rissanen, Langdon, Rubin, Jones – 1979.	
Fully practical methods.	
• Langdon, Witten/Neal/Cleary — 1980 s. Popularization.	
 Many more (eg, Moffat/Neal/Witten) 	
Further refinements to the method.	