
CSC310 – Information Theory Sam Roweis

Lecture 7:

Stream Codes & Arithmetic Coding

October 3, 2005

Another Look at Code Trees 1

• Any instantaneous code can be represented by a tree such as the
following, with subtrees for codewords circled:

0

1

00

01

10

11

000

001

010

011

100

101

110

111

NULL

Rather than concentrate on the codewords that head each subtree,
let’s concentrate on the leaves. . .

Viewing a Code as a Way of Dividing up ‘Codespace”2

• Here are the codetree leaves, divided up according to codeword:

010

011

100

101

110

111

Symbol a , Codeword 100

Symbol a , Codeword 101

Symbol a , Codeword 11

Symbol a , Codeword 01

2

3

4

001

000

If we view {000, 001, 010, 011, 100, 101, 110, 111} as an available
“codespace”, we see that this code divides it up so that symbol a1
gets 1/2 of it, symbols a2 and a3 get 1/8, and symbol a4 gets 1/4.

What About Other Divisions? 3

• We know that this code is optimal if the fraction of codespace
assigned to a symbol is equal to the symbol’s probability.

• But suppose the symbol probabilities were 3/8, 1/8, 1/8, 3/8.
We would then like to divide up codespace as follows:

010

011

100

101

110

111

Symbol a , probability 1/8

Symbol a , probability 1/8

Symbol a , probability 3/8

Symbol a , probability 3/8

1

2

3

4

001

000

• Unfortunately, these divisions don’t correspond to subtrees — so
there’s no prefix-free code like this.

Viewing the Codespace as the Interval [0,1) 4

• Even if we could solve the problem of how to generate codewords
corresponding arbitrary divisions of codespace, how can we handle
symbols with probabilities like 1/3, which aren’t multiples of 2−k?

• A solution: Consider the codespace to be the interval of real
numbers between 0 and 1. Example:

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

3

2Symbol a , probability 1/6

1

4Symbol a , probability 1/3

Symbol a , probability 1/6

Symbol a , probability 1/3

0

1

5/6

2/3

1/2

1/6

1/3

Key Concept: Encode Blocks by Subdiving Further 5

• Consider the source with probabilities {1/3, 1/6, 1/6, 1/3}.

• Suppose we want to encode blocks of two symbols from this source.
We can do this by just subdividing the interval corresponding to the
first symbol in the block, in the same way as we subdivided the
original interval.

• Here’s, how we encode the block a4 a1:

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

Symbol a , probability 1/3

Symbol a , probability 1/6

Symbol a , probability 1/6

 = (2/3, 7/9)

a1

4

3

2

1

4 1

Symbol a , probability 1/3
Interval for a a

1

0

Encoding Large Blocks as Intervals 6

• A general scheme for encoding a block of N symbols, ai1, . . . , aiN

1) Initialize the interval to
[

u(0), v(0)
)

; u(0) = 0 and v(0) = 1.

2) For k = 1, . . . , N :

Let u(k) = u(k−1) +
(

v(k−1) − u(k−1)
) ik−1

∑

j=1
pj

Let v(k) = u(k) +
(

v(k−1) − u(k−1)
)

pik

3) Output a codeword that corresponds (somehow) to the final

interval,
[

u(N), v(N)
)

.

• This scheme is known as arithmetic coding, since codewords are
found using arithmetic operations on the probabilities.

Finding a Codeword for an Interval 7

• The last step requires that we be able to find a codeword to
represent the final interval. We’ll insist on an instantaneous code,
for which no codeword is a prefix of another codeword.

• Observation: any binary codeword defines a number in [0, 1), found
by putting a “binary point” at its left end. Eg, the codeword 101...
defines the number 1 × (1/2) + 0 × (1/4) + 1 × (1/8) . . .

• Based on this, we’ll choose a codeword such that:

– The codeword defines a point in the final interval.

– If we added any string of bits to the end of the codeword, it
would still define a point in the final interval.

This is equivalent to finding the largest interval of the form
[w/2k, (w + 1)/2k) that fits entirely within [u, v).

• Codewords chosen in this way will form a prefix code for the blocks.

How Long Will the Codewords Be? 8

• Here’s a picture of how we pick a codeword for an interval:

� �� �� �� �u

kkk (w+2)/2 (w+1)/2 w/2

v �������	
� �

• Here, the interval [w/2k, (w + 1)/2k) fits entirely within [u, v), the
final interval found when encoding the block. We can therefore use
the k-bit binary representation of w as the codeword for this block.

• This can only be true if v−u ≥ 1/2k. Also, we will always be able
to find such a codeword of length k if v−u ≥ 2/2k = 1/2k−1.

•Conclusion: We can pick a codeword of length k for a block of
probability p = (v−u) if k ≥ log(1/p) + 1.
So codewords need be no longer than dlog(1/p)e + 1.

Arithmetic Coding Gets Close to the Entropy 9

• We encode symbols from AX in blocks of size N (ie, we use the
N -th extension, AN

X), with N being quite large.

• Assuming independence, the probability of the block ai1, . . . , aiN is
pb = pi1 · · · piN .

• We can find the interval for this block without explicitly considering
all possible blocks by subdividing (0, 1) N times according to the ik.

• We can then find a binary codeword for this block no longer than

dlog(1/pb)e + 1 < log(1/pb) + 2

• The average codeword length for blocks will be less than

2 +
∑

b

pb log(1/pb) = 2 + H(AN
X) = 2 + NH(AX)

• The average number of bits transmitted per symbol of AX will be
less than H(AX) + 2/N ; without ever considering all blocks.

How Well it Works (So Far) 10

•Big advantage:
We can get arbitrarily close to the entropy using big blocks, without
an exponential growth in complexity with block size.

•Big disadvantage (so far):
If we use big blocks, most block probabilities will be tiny.
Therefore, the interval corresponding to the block will be very
narrow. To represent this interval using the procedure we described,
we will have to use highly precise arithmetic (many bits).

• In fact, the number of bits of precision needed for a good
approximation will go up linearly with blocksize, and the time for
arithmetic involving such operands will also grow linearly.

• Fortunately, this disadvantage can be overcome.

Transmitting Bits as We Go 11

• The problem of needing high-precision arithmetic makes aritmetic
coding potentially impractical. We’ll try to solve it by transmitting
bits as soon as they are determined.

• Example: After looking at the first few symbols in our block, our
interval has been reduced to [0.625, 0.875) = [0.1012, 0.1112).

• Any number in this interval that we might eventually transmit will
start with a 1 bit. So we can transmit this bit immediately, without
even looking at what symbols come next!

Expanding the Interval After Transmitting a Bit 12

• Once we transmit a bit that is determined by the current interval,
we can throw that bit away, and then expand the interval by
moving the “bit point” one place to the right and doubling.

• Example: Continuing from the previous slide, the interval
[0.625, 0.875) = [0.1012, 0.1112) results in transmission of a 1.
We then throw out the 1, and double the bounds, giving the
interval [0.0102, 0.1102).

• Hopefully, expanding the interval will allow us to use numerical
representations of the bounds, u and v, that are of lower precision.

Picture Of How it Works 13

Suppose we are encoding symbols from the alphabet {a1, a2, a3, a4},
with probabilities 1/3, 1/6, 1/6, 1/3.
Here’s how the interval changes as we encode the message a4, a2, . . .

� �
� �

� �
� �

� � �
� � �

� �
� �

� �
	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	

� �

a

a a

a

a

0
Transmit

1
Transmit

1
Transmit

Received Received

1

a

4

2

3

3

1

4

2

1

24 a

a

a

a

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

1/2

0

� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

Arithmetic Coding Without Blocks (ver 1.0) 14

1) Initialize interval [u, v) to u = 0 and v = 1.

2) For each source symbol, ai, in turn:
Compute r = v − u.

Let u = u + r
i−1
∑

j=1
pj. Let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2:
If u ≥ 1/2:

Transmit a 1 bit.
Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:
Transmit a 0 bit.
Let u = 2u and v = 2v.

3) Transmit enough final bits to specify a number in [u, v).

Precision Might Still be a Problem... 15

• We hope that by transmitting bits early and expanding the interval,
we can avoid tiny intervals, requiring high precision to represent.

• Problem: What if the interval gets smaller and smaller, but it
always includes 1/2?

• For example, as we encode symbols, we might get intervals of:
[0.000002, 1.000002)
[0.010102, 0.110012)
[0.011012, 0.101002)
[0.011112, 0.100102)
· · ·

• Although the interval is getting smaller and smaller, we still can’t
tell whether the next bit to transmit is a 0 or a 1.

A Solution 16

• When a narrow interval straddles 1/2, it will have the form

[0.01xxx, 0.10xxx)

• So although we don’t know what the next it to transmit is, we do
know that the bit transmitted after the next will be the opposite.

• We can therefore expand the interval around the middle of the
range, remembering that the next bit output should be followed by
an opposite bit.

• If we need to do several such expansions, there will be several
opposite bits to output.

Arithmetic Coding Without Blocks (ver 1.1) 17

1) Initialize the interval [u, v) to u = 0 and v = 1.
Initialize the “opposite bit count” to c = 0.

2) For each source symbol, ai, in turn:
Compute r = v − u.

Let u = u + r
i−1
∑

j=1

pj. Let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2 or u ≥ 1/4 and v ≤ 3/4:
If u ≥ 1/2:

Transmit a 1 bit followed by c 0 bits. Set c to 0.
Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:
Transmit a 0 bit followed by c 1 bits. Set c to 0.
Let u = 2u and v = 2v.

If u ≥ 1/4 and v ≤ 3/4:
Set c to c + 1.
Let u = 2(u−1/4) and v = 2(v−1/4).

3) Transmit enough final bits to specify a number in [u, v).

What Have We Gained? 18

• By expanding the interval in this way, we ensure that the size of the
(expanded) interval, v − u, will always be at least 1/4.

• We can now represent u and v with a fixed amount of precision —
we don’t need more precision for longer messages.

• We will use a fixed point (scaled integer) representation for u and
v.

• Why not floating point?

– Fixed point arithmetic is faster on most machines.

– Fixed point arithmetic is well defined. Floating point arithmetic
may vary slightly from machine to machine. The effect? Machine
B might not correctly decode a file encoded on Machine A!

