Lecture 6:

September 28, 2005

- Suppose we have an instantaneous code for symbols a_{1}, \ldots, a_{I}, with probabilities p_{1}, \ldots, p_{I} and codeword lengths l_{1}, \ldots, l_{I}.
- Under each of the following conditions, we can find a better instantaneous code, i.e. one with smaller expected codeword length:

1. If $p_{1}<p_{2}$ and $l_{1}<l_{2}$: Swap the codewords for a_{1} and a_{2}.
2. If there is a codeword of the form $x b y$, where x and y are strings of zero or more bits, and b is a single bit, but there are no codewords of the form $x b^{\prime} z$, where z is a string of zero or more bits, and $b^{\prime} \neq b$:
Change all the codewords of the form $x b y$ to $x y$. (This improves things if none of the p_{i} are zero, and never makes things worse.)

- We can view these improvements in terms of the trees for the codes. Here's an example:

- Two codewords have the form $01 \ldots$ but none have the form $00 \ldots$
(ie, there's only one branch out of the 0 node).
- We can therefore improve the code by deleting the surplus node.
- The result is the code shown below:

- Now we note that a_{6}, with probability 0.30 , has a longer codeword than a_{1}, which has probability 0.11 . We can improve the code by swapping the codewords for these symbols.
- Here's the code after this improvement:

- In general, after such improvements:

The most improbable symbol will have the longest codeword and there will be at least one other codeword of this length - its
"sibling" in the tree. The second-most improbable symbol will also have a codeword of the longest length.

A Final Rearrangement

- The codewords for the most improbable and second-most improbable symbols must have the same length.
- The most improbable symbol's codeword also has a "sibling" of the same length.
- We can swap codewords to make this sibling be the codeword for the second-most improbable symbol. For the example, the result is:

Reminder: Block Codes for Achieving the Entropy 6

- Last class we proved that Huffman codes are the optimal single symbol codes (plus a warning: top-down splitting does not work).
- We also proved Shannon's first theorem by showing that if we encode long enough blocks we can get the average per-symbol entropy as close as we want to the entropy of the source.
- Our proof used lossless codes of variable length (some blocks had codes longer than other blocks). For ease, we used Shannon-Fano codes, but we could also have used Huffman Codes or any other symbol other code which is guaranteed to get within a constant of the entropy.
- There is another way to compress down to the entropy using long blocks; that is to use lossy codes of fixed length.

Another Way to Compress Down to The Entropy 7

- We get a similar result by supposing that we will always encode N symbols into a block of exactly $N R$ bits (fixed length code).
Can we do this in a way that is very likely to be decodable?
- Yes, for large values of N. The Law of Large Numbers (LLN) tells us that the sequence of symbols to encode, $a_{i_{1}}, \ldots, a_{i_{N}}$, is very likely to be a "typical" one, for which

$$
\frac{1}{N} \log _{2}\left(1 /\left(p_{i_{1}} \cdots p_{i_{N}}\right)\right)=\frac{1}{N} \sum_{j=1}^{N} \log _{2}\left(1 / p_{i_{j}}\right)
$$

is very close to the expectation of $\log _{2}\left(1 / p_{i}\right)$, which is the entropy, $H(X)=\sum_{i} p_{i} \log _{2}\left(1 / p_{i}\right)$. (See Section 4.3 of MacKay's book.)

- So if we encode all the sequences in this typical set in a way that can be decoded, the code will almost always be uniquely decodable.
- Let's define "typical" sequences as ones where

$$
(1 / N) \log _{2}\left(1 /\left(p_{i_{1}} \cdots p_{i_{N}}\right)\right) \leq H(X)+\eta / \sqrt{N}
$$

The probability of any such typical sequence will satisfy

$$
p_{i_{1}} \cdots p_{i_{N}} \geq 2^{-N H(X)-\eta \sqrt{N}}
$$

- We scale the margin allowed above $H(X)$ as $1 / \sqrt{N}$ since that's how the standard deviation of an average scales. LLN (Chebychev's inequality) then tells us that most sequences will satisfy this condition, for some large enough value of η.
- The total probability for all such sequences can't be greater than one, so the number of "typical" sequences can't be greater than

$$
2^{N H(X)+\eta \sqrt{N}}
$$

- Example: Consider flipping a coin with $p_{\text {heads }}=0.1$.
- Here are the plots of δ vs. H_{δ}.

- For large N, H_{δ} becomes almost independent of δ.
- The number of "typical" sequences can't be greater than

$$
2^{N H(X)+\eta \sqrt{N}}
$$

- We will be able to encode these sequences in $N R$ bits if $N R \geq N H(X)+\eta \sqrt{N}$. (Using any arbitrary code in which we assign each typical sequence to one of the $2^{N R}$ codes.)
If $R>H(X)$, this will be true if N is sufficiently large.
- How often will a sequence of length N fail to be in the typical set? To answer this, we need to know how many sequences live in the upper "tail" of the distribution of $(1 / N) \log _{2}\left(1 /\left(p_{i_{1}} \cdots p_{i_{N}}\right)\right)$.
- We can define $H_{\delta}\left(X^{N}\right)$ to be average codeword length needed for the typical set to leave out only a fraction δ of possible sequences. Formally, it is the logarithm of the minimum number of sequences in the $N^{t h}$ extension of X whose probabilities sum to at least $1-\delta$.
- Let X be an ensemble with entropy $H(X)=H$ bits.
- Given $\epsilon>0$ and $0<\delta<1$, there exists a positive integer N_{0} such that for $N>N_{0}$,

$$
\left|\frac{1}{N} H_{\delta}\left(X^{N}\right)-H\right|<\epsilon
$$

- Both sides of the inequality are interesting. The first part tells us that even if the probability of error δ is extremely small, the average number of bits per symbol $\frac{1}{N} H_{\delta}\left(X^{N}\right)$ needed to specify a long N-symbol string with vanishingly small error probability does not have to exceed $H+\epsilon$ bits. We need to have only a tiny tolerance for error, and the number of bits required drops significantly from $H_{0}(X)$ to $(H+\epsilon)$.
- Let X be an ensemble with entropy $H(X)=H$ bits.
- Given $\epsilon>0$ and $0<\delta<1$, there exists a positive integer N_{0} such that for $N>N_{0}$,

$$
\left|\frac{1}{N} H_{\delta}\left(X^{N}\right)-H\right|<\epsilon
$$

- What happens if we are yet more tolerant to compression errors? The second part tells us that even if δ is very close to 1 , so that errors are made most of the time, the average number of bits per symbol needed must still be at least $H-\epsilon$ bits.
- These two extremes tell us that regardless of our specific allowance for error, the number of bits per symbol needed is H bits; no more and no less.

An End and a Beginning

Shannon's Noiseless Coding Theorem is mathematically satisfying.
From a practical point of view, though, we still have two problems:

- How can we compress data to nearly the entropy in practice? The number of possible blocks of size N is I^{N} - huge when N is large. And N sometimes must be large to get close to the entropy by encoding blocks of size N.
Solution: Instead of symbol codes or block codes, we will introduce a more powerful set of codes called stream codes. The most important example is known as arithmetic coding (coming next).
- Where do the symbol probabilities p_{1}, \ldots, p_{I} come from? And are symbols really independent, with known, constant probabilities? This is the problem of source modeling.
Solution: adaptive methods, which update their estimates of the source model as they encode more and more data.
(We'll see these shortly.)

