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Some Observations about Instantaneous Codes 1

• Suppose we have an instantaneous code for symbols a1, . . . , aI ,
with probabilities p1, . . . , pI and codeword lengths l1, . . . , lI .

• Under each of the following conditions, we can find a better
instantaneous code, i.e. one with smaller expected codeword length:

1. If p1 < p2 and l1 < l2: Swap the codewords for a1 and a2.

2. If there is a codeword of the form xby, where x and y are strings
of zero or more bits, and b is a single bit, but there are no
codewords of the form xb′z, where z is a string of zero or more
bits, and b′ 6= b:
Change all the codewords of the form xby to xy. (This improves
things if none of the pi are zero, and never makes things worse.)

The Improvements in Terms of Trees 2

• We can view these improvements in terms of the trees for the
codes. Here’s an example:
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• Two codewords have the form 01 . . . but none have the form 00 . . .
(ie, there’s only one branch out of the 0 node).

• We can therefore improve the code by deleting the surplus node.

Continuing to Improve the Example 3

• The result is the code shown below:
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• Now we note that a6, with probability 0.30, has a longer codeword
than a1, which has probability 0.11. We can improve the code by
swapping the codewords for these symbols.



The State After These Improvements 4

• Here’s the code after this improvement:
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• In general, after such improvements:
The most improbable symbol will have the longest codeword and
there will be at least one other codeword of this length — its
“sibling” in the tree. The second-most improbable symbol will also
have a codeword of the longest length.

A Final Rearrangement 5

• The codewords for the most improbable and second-most
improbable symbols must have the same length.

• The most improbable symbol’s codeword also has a “sibling” of the
same length.

• We can swap codewords to make this sibling be the codeword for
the second-most improbable symbol. For the example, the result is:
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Reminder: Block Codes for Achieving the Entropy 6

• Last class we proved that Huffman codes are the optimal single
symbol codes (plus a warning: top-down splitting does not work).

• We also proved Shannon’s first theorem by showing that if we
encode long enough blocks we can get the average per-symbol
entropy as close as we want to the entropy of the source.

• Our proof used lossless codes of variable length (some blocks had
codes longer than other blocks). For ease, we used Shannon-Fano
codes, but we could also have used Huffman Codes or any other
symbol other code which is guaranteed to get within a constant of
the entropy.

• There is another way to compress down to the entropy using long
blocks; that is to use lossy codes of fixed length.

Another Way to Compress Down to the Entropy 7

• We get a similar result by supposing that we will always encode N
symbols into a block of exactly NR bits (fixed length code).
Can we do this in a way that is very likely to be decodable?

• Yes, for large values of N . The Law of Large Numbers (LLN) tells
us that the sequence of symbols to encode, ai1, . . . , aiN , is very
likely to be a “typical” one, for which

1

N
log2(1/(pi1 · · · piN )) =

1

N

N
∑

j=1

log2(1/pij)

is very close to the expectation of log2(1/pi), which is the entropy,
H(X) =

∑

i
pi log2(1/pi). (See Section 4.3 of MacKay’s book.)

• So if we encode all the sequences in this typical set in a way that
can be decoded, the code will almost always be uniquely decodable.



How Big is the Typical Set? 8

• Let’s define “typical” sequences as ones where

(1/N ) log2(1/(pi1 · · · piN )) ≤ H(X) + η/
√

N

The probability of any such typical sequence will satisfy

pi1 · · · piN ≥ 2−NH(X)−η
√

N

• We scale the margin allowed above H(X) as 1/
√

N since that’s
how the standard deviation of an average scales. LLN (Chebychev’s
inequality) then tells us that most sequences will satisfy this
condition, for some large enough value of η.

• The total probability for all such sequences can’t be greater than
one, so the number of “typical” sequences can’t be greater than

2NH(X)+η
√

N

Encoding sequences in the typical set 9

• The number of “typical” sequences can’t be greater than

2NH(X)+η
√

N

• We will be able to encode these sequences in NR bits if
NR ≥ NH(X) + η

√
N . (Using any arbitrary code in which we

assign each typical sequence to one of the 2NR codes.)
If R > H(X), this will be true if N is sufficiently large.

• How often will a sequence of length N fail to be in the typical set?
To answer this, we need to know how many sequences live in the
upper “tail” of the distribution of (1/N ) log2(1/(pi1 · · · piN )).

• We can define Hδ(X
N ) to be average codeword length needed for

the typical set to leave out only a fraction δ of possible sequences.
Formally, it is the logarithm of the minimum number of sequences
in the N th extension of X whose probabilities sum to at least 1− δ.

Example 10

• Example: Consider flipping a coin with pheads = 0.1.

• Here are the plots of δ vs. Hδ.
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• For large N , Hδ becomes almost independent of δ.

Another Statement of Shannon’s Theorem 11

• Let X be an ensemble with entropy H(X) = H bits.

• Given ε > 0 and 0 < δ < 1, there exists a positive integer N0 such
that for N > N0,
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• Both sides of the inequality are interesting. The first part tells us
that even if the probability of error δ is extremely small, the average
number of bits per symbol 1

NHδ(X
N ) needed to specify a long

N -symbol string with vanishingly small error probability does not
have to exceed H + ε bits. We need to have only a tiny tolerance
for error, and the number of bits required drops significantly from
H0(X) to (H + ε).



Another Statement of Shannon’s Theorem 12

• Let X be an ensemble with entropy H(X) = H bits.

• Given ε > 0 and 0 < δ < 1, there exists a positive integer N0 such
that for N > N0,
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• What happens if we are yet more tolerant to compression errors?
The second part tells us that even if δ is very close to 1, so that
errors are made most of the time, the average number of bits per
symbol needed must still be at least H − ε bits.

• These two extremes tell us that regardless of our specific allowance
for error, the number of bits per symbol needed is H bits; no more
and no less.

An End and a Beginning 13

Shannon’s Noiseless Coding Theorem is mathematically satisfying.
From a practical point of view, though, we still have two problems:

• How can we compress data to nearly the entropy in practice? The
number of possible blocks of size N is IN — huge when N is large.
And N sometimes must be large to get close to the entropy by
encoding blocks of size N .
Solution: Instead of symbol codes or block codes, we will introduce a
more powerful set of codes called stream codes. The most important
example is known as arithmetic coding (coming next).

• Where do the symbol probabilities p1, . . . , pI come from? And are
symbols really independent, with known, constant probabilities? This
is the problem of source modeling.
Solution: adaptive methods, which update their estimates of the
source model as they encode more and more data.
(We’ll see these shortly.)


