
Lecture 3:

Constructing Instantaneous Codes

Sam Roweis

September 19, 2005

Review: Course Content

• Lossless Data Compression
Shannon’s Noiseless Coding Theorem
Lower limit on lossless compression is the “source entropy”.
Algorithms: Huffman Coding, Arithmetic Coding

• Transmission over Noisy Channels
Shannon’s Noisy Coding Theorem
Upper limit on error-free transmission rate is “channel capacity”.
Algorithms: Linear Codes, Low Density Parity Check Codes

• (*)Lossy Compression
Shannon’s Rate-Distortion Theorem
Algorithms: mp3,jpeg,mpeg

Review: Our Approach

• The study of both compression and transmission requires that we
abstract data and messages as sequences of symbols from a finite
alphabet (ignoring semantics of content).

• Both problems involve two distinct tasks:
1) Modeling. We have to represent the stochastic behaviour of the
source and the channel using probabilistic models.
2) Encoding/Decoding. Given our source and channel models we
want to algorithmically design schemes for compression and
transmission that have certain good properties
(correct/efficient/optimal).

• For now, we are assuming the models are known and are focusing
on the codes. But later in the course we will study
adaptive/dictionary methods (e.g. Lempel-Ziff,gzip,PPM) which
combine modeling and coding together.

Review: Mathematical Setup

• A stochastic source emits a sequence of symbols (from alphabet A)
X = X1, X2, . . . , XN with probability p(X).

• Our encoder (code) C converts this into an (bitstring) encoding Z.

• We assume (for now) that the decoder can see Z exactly (noiseless
channel), that we are required to reconstruct X exactly (lossless
compression) and that we are using a symbol code, (i.e. we encode
each symbol Xi independently and concatenate their encodings).

• We require the code to be uniquely decodable (UD), and we saw
that for any UD code there is always an instantaneously decodable
(ID) code with the same codeword lengths. These lengths must
satisfy the Kraft-McMillan inequality:

∑

i 2−li ≤ 1.

• We will measure the quality of our code by the average length
(under p(X)) of the encoding Z, compared to the length of X.



Proving the Two Inequalities

• We can prove both Kraft’s and McMillan’s inequality by proving
that for any set of lengths, l1, . . . , lI , for binary codewords:

A) If
∑I

i=1 1/2li ≤ 1, we can construct an instantaneous code
with codewords having these lengths.

B) If
∑I

i=1 1/2li > 1, there is no uniquely decodable code with
codewords having these lengths.

• (A) is half of Kraft’s inequality.
(B) is half of McMillan’s inequality.

• Using the fact that instantaneous codes are uniquely decodable,
(A) gives the other half of McMillan’s inequality, and (B) gives the
other half of Kraft’s inequality.

• To do this, we’ll introduce a helpful way of thinking about codes
as...trees!

Visualizing Prefix-Free Codes as Trees

• We can view codewords of an instantaneous (prefix-free) code
as leaves of a tree.

• The root represents the null string; each level corresponds to
adding another code symbol.

• Here is the tree for a code with codewords 0, 11, 100, 101:

0

1

10

11

101

NULL

100

Extending the Tree to Maximum Depth

• We can extend the tree by filling in the subtree underneath every
actual codeword, down to the depth of the longest codeword.

• Each codeword then corresponds to either a leaf or a subtree.

• Previous tree extended, with each codeword’s leaf or subtree circled:

0

1

00

01

10

11

000

001

010

011

100

101

110

111

NULL

• Short codewords occupy more of the tree. For a binary code, the
fraction of leaves taken by a codeword of length l is 1/2l.

Constructing Instantaneous Codes

• Suppose that Kraft’s Inequality holds:

I
∑

i=1

1

2li
≤ 1

• Order the lengths so l1 ≤ · · · ≤ lI .

• Q: In the binary tree with depth lI , how can we allocate subtrees to
codewords with these lengths?

• A: We go from shortest to longest, i = 1, . . . , I:

1) Pick a node at depth li that isn’t in a subtree previously used,
and let the code for codeword i be the one at that node.

2) Mark all nodes in the subtree headed by the node just picked as
being used, and not available to be picked later.

• Let’s look at an example...



Building an Instantaneous Code (0)

• Let the lengths of the codewords be {1,2,3,3}.

• First check: 2−1 + 2−2 + 2−3 + 2−3 ≤ 1.

• Initialize the tree (level 0).

0 1 0 1 0 1 0 1

0 10 1

NULL
0 1

Building an Instantaneous Code (1)

• Let the lengths of the codewords be {1,2,3,3}.

• Pick (arbitrarily) an unmarked node at level 1 to use for codeword
of length 1; mark the subtree below it.

0 1 0 1 0 1 0 1

0 1

NULL

1

0 1

0 1

Building an Instantaneous Code (2)

• Let the lengths of the codewords be {1,2,3,3}.

• Pick (arbitrarily) an unmarked node at level 2 to use for codeword
of length 2; mark the subtree below it.

0 1 0 1

NULL

1
0 1

0 1

00
0 1

0 1

0 1

Building an Instantaneous Code (3)

• Let the lengths of the codewords be {1,2,3,3}.

• Pick two unmarked nodes at level 3 as codewords of length 3.

0 1 0 1

0 1

NULL

1

011010

0 1

00
0 1

0 1

0 1



Building an Instantaneous Code

• Let the lengths of the codewords be {1,2,3,3}.

• Our final code can be read from the leaf nodes: {1,00,010,011}.

NULL

1
0 1

011010

0 1
00

0 1

Construction Will Always Be Possible

• Q: Will there always be a node available in step (1) above?

• If Kraft’s inequality holds, we will always be able to do this.

• To begin, there are 2lb nodes at depth lb.

• When we pick a node at depth la, the number of nodes that
become unavailable at depth lb (assumed not less than la) is 2lb−la.

• When we need to pick a node at depth lj, after having picked
earlier nodes at depths li (with i < j and li ≤ lj), the number of
nodes left to pick from will be an integer equal to

2lj −

j−1
∑

i=1

2lj−li = 2lj



1 −

j−1
∑

i=1

1

2li



 > 0

Since
j−1
∑

i=1
1/2li <

I
∑

i=1
1/2li ≤ 1, by assumption.

• This proves we can always construct an ID code if
∑

i 2−li ≤ 1.

UD Codes Must Obey the Inequality

• Let l1 ≤ · · · ≤ lI be the codeword lengths. Define K =
∑I

i=1
1
2li

.

• For any positive integer n, we can sum over all possible
combinations of values for i1, . . . , in in {1, . . . , I} to get Kn.

Kn =
∑

i1,...,in

1

2li1
× · · · ×

1

2lin

• We rewrite this in terms of possible values for j = li1 + · · · + lin:

Kn =

nlI
∑

j=1

Nj,n

2j

Nj,n is the # of sequences of n codewords with total length j.

• If the code is uniquely decodable, Nj,n ≤ 2j, so Kn ≤ nlI ,
which for big enough n is possible only if K ≤ 1.

• This proves that any UD code must satisfy
∑

i 2−li ≤ 1.

Tradeoffs Choosing Codeword Lengths

• The Kraft-McMillan inequalities imply that to make some
codewords shorter, we will have to make others longer.

• Example: The obvious binary encoding for eight symbols uses
codewords that are all three bits long. This code is instantaneous,
and satisfies the Kraft inequality, since:

1

23
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
= 1

• Suppose we want to encode the first symbol using only two bits.
We’ll have to make some other codewords longer – eg, we can
encode two of the other symbols in four bits, and the remaining five
symbols in three bits, since

1

22
+

1

24
+

1

24
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
= 1

How should we choose among the possible codes?



Formalizing Which Codes are the Best:
Probabilities for Source Symbols

• We’d like to choose a code that uses short codewords for common
symbols and long ones for rare symbols.

• To formalize this, we need to assign each symbol in the source
alphabet a probability.

• Symbols a1, . . . , aI will have probabilities written as p1, . . . , pI .
We assume that these probabilities don’t change with time.

• We also assume that symbols in the source sequence,
X1, X2, . . . , XN , are independent:

P (X1 = ai1, X2 = ai2, . . . , Xn = aiN )

=
∏

n

P (Xn = ain) = pi1 pi2 · · · piN

• These assumptions are really too restrictive in practice, but we’ll
ignore that for now.

Expected Codeword Length

• Consider a code whose codewords for symbols a1, . . . , aI have
lengths l1, . . . , lI . Let the probabilities of these symbols be
p1, . . . , pI . We define the expected codeword length for this code
to be

L = L(C,X) =

I
∑

i=1

pili

• This is the average length of the codeword encoding a single source
symbol. But since averaging is a linear operation, the average
length of a coded message with N source symbols is just NL.

• We aim to choose a code for which L is small.

• Basically, we want to assign short codeword lengths to the more
probable symbols but we also need to satisfy the KM inequality so
we will be forced to assign longer lengths to the less probable
symbols.

Optimal Codes

• We say a code is optimal for a given source (with given symbol
probabilities) if its average length is at least as small as that of any
other code. (There can be many optimal codes for the same
source, all with the same average length.)

• The Kraft-McMillan inequalities imply that if there is an optimal
code, there is also an optimal instantaneous code. More generally,
for any uniquely decodable code with average length L, there is an
instantaneous code with the same average length.

• Questions: Can we figure out the codeword lengths of an optimal
code starting from the symbol probabilities? i.e. can we solve:

min
{li}

∑

i

pili subject to
∑

i

2−li ≤ 1

Can we find such an optimal code, and use it in practice?

• Answers: next class!


