
CSC310 – Information Theory Sam Roweis

Lecture 22:

Erasure (Deletion) Channels &
Digital Fountain Codes

November 30, 2005

Erasure Channels 1

• In many practical communication systems, information is not just
corrupted, it is outright lost by the channel.

• For example, on the internet, information is transmitted in packets
which often completely disappear.

• As a simple model, imagine that packets are lost with probability f
and that each packet has an ID number embedded in it (perhaps
using the first few bits), so the receiver knows which packets she
received and which were lost.

•We previously studied the Binary Erasure Channel (BEC), which is
a very simple example of this when packets have length 1 bit: if the
packet was lost we received a “?”, otherwise we received the
packets correctly.

•We’d like to think about the case when the packets are (much)
longer than one bit in length.

Recovering From Erasures 2

• How can we recover from erasures?

• For the BEC, we saw that low-density parity check (LDPC) codes
were very effective at “filling-in” the missing bits and had a very
efficient decoding algorithm.

• For slightly longer packets (a few bits to a few tens of bits in
length), there is a class of Reed-Solomon codes which can correct
against erasures and long runs (blocks) of errors.

• For very long packets there is an extremely clever scheme called
Digital Fountain Codes developed by Mike Luby in 1988.

see www.digitalfountain.com

Inefficiency of Retransmission 3

•Why do we need to recover lost packets algorithmically? Why not
just either explictly acknowledge each received packet and have the
sender retransmit those not acknowledged? Or why not have the
receiver explicitly request retransmission of those not received?

• This requires a feedback channel (from receiver → sender) which
often does not exist, especially in a broadcast situation.

• Furthermore, retransmission is very wasteful of capacity.
Either many unecessary acknowledgements are sent (in low-erasure
channels) or else many redundant retransmissions are made
(in high-erasure channels).

•We would like a scheme which does not require a feedback channel
makes optimal use of the capacity of the forward channel,
regardless of whether the erasure rate is high or low.



Reed-Solomon Codes 4

• Think of our message as K + 1 numbers s0, s1, . . . , sK .

• Consider the polynomial S(x) = s0 + s1x + s2x
2 + . . . + sKxK .

• Evaluate S(x) at N > K points x1, x2, . . . , xN .

• Transmit the values S(x1), S(x2), . . . , S(xN ) across the channel.

• If any K + 1 or more of the values are received, we fit a polynomial
to them and exactly recover the coefficients (the original message).

• This is the basic idea behind Reed-Soloman
codes, except that they are implemented with
finite precision instead of real numbers, using
the mathematics of Galois Fields.

• These codes are used on compact discs,
DVDs, HDTV and in communication with
Voyager, Gallileo and other space satellites.

Luby Transform (LT) Codes 5

• The idea of LT codes is that the sender is a fountain that produces
an endless supply of encoded packets. (Hence these codes and their
variants are often called digital fountain codes.)

• Say the original source file has a size of Kl bits,
and each packet contains l encoded bits.

• Anyone who wishes to receive the complete file
holds a bucket under the fountain and collects
packets until they have collected a little more
than K (in practice, this is usually around 5%).

• They can then almost certainly (with prob.
1 − δ) recover the original file exactly.

• The overhead scales as
√

K(ln(K/δ))2.

LT Codes are Rateless and Universal 6

• LT codes are rateless in the sense that the number of encoded
packets that can be generated from the source message is
potentially limitless and the number of encoded packets generated
can be determined on the fly.

• Regardless of the statistics of the erasure events on the channel, we
can send as many encoded packets as are needed in order for the
decoder to recover the source data.

• LT codes also have fantastically small encoding and decoding
complexities. With probability 1 − δ, K packets can be
communicated with average encoding and decoding costs both of
order K ln(K/δ) packet operations.

• Luby calls these codes universal because they are simultaneously
near-optimal for every erasure channel, and they are very efficient
as the file length K grows.

Encoding for LT Codes 7

• Each encoded packet tn is produced from the source s1 . . . sK
as follows:

1. Randomly choose the “degree” dn of the packet tn from a
degree distribution ρ(d). (The appropriate choice of ρ depends
on the source file size K, as we’ll discuss later.)

2. Choose, uniformly at random, dn distinct input packets, and set
tn equal to the bitwise sum (modulo 2) of those dn packets.
(Computed by successively XOR-ing the packets together.)

• This encoding operation defines a graph connecting encoded
packets to source packets. If the mean degree d̄ is significantly
smaller than K then the graph is sparse.

•We can think of the resulting code as an irregular LDPC code.



Decoding LT Codes 8

•Decoding LT codes is acheived with a message passing algorithm
very similar to the one we used for LDPC codes on the BEC.

• Think of the encoded packets {tn} as check nodes.

• To start with, set all the source packets sk to be “?” (unknown).

• Repeatedly find a check node tn that is connected to only one

unknown source packet sk. (If there is no such check node,
decoding halts fails to recover all the source packets.)

• Fill in the unknown source packet using the XOR of the known
packets (if any) and the encoded packet at the check node.

Sending the Connectivity Pattern (Graph) 9

• The decoder needs to know the degree of each packet that is
received, and which source packets it is connected to in the graph.

• This information can be communicated in various ways.

• For example, if the sender and receiver have synchronized clocks,
they could use identical pseudo-random number generators, seeded
by the clock, to choose each random degree and each set of
connections.

• Alternatively, the sender could pick a random key, κn, given which
the degree and the connections are determined by a pseudo-random
process, and send that key in the header of the packet. As long as
the packet size l is much bigger than the key size (which need only
be 32 bits or so), this key introduces only a small overhead cost.

Designing the degree distribution 10

• The probability distribution ρ(d) of the degree is a critical part of
the design: occasional encoded packets must have high degree (i.e.
d similar to K) in order to ensure that there are not some source
packets that are connected to no-one.

•Many packets must have low degree, so the decoding process can
get started, and keep going, and so the total number of addition
operations involved in the encoding and decoding is kept small.

• Ideally, to avoid redundancy, we’d like the received graph to have
the property that just one check node has degree one at each
iteration. At each iteration, when this check node is processed, the
degrees in the graph are reduced in such a way that one new
degree-one check node appears.

The Soliton Distribution 11

• In expectation, this ideal behaviour is achieved by the ideal soliton

distribution,

ρ(1) = 1/K

ρ(d) = 1
d(d−1)

for d = 2, 3, . . . ,K.

• The expected degree under this distribution is roughly ln K.

• Unfortunately, this degree distribution works poorly in practice,
because fluctuations around the expected behaviour make it very
likely that at some point in the decoding process there will be no
degree-one check nodes; and, furthermore, a few source nodes will
receive no connections at all. A small modification, slightly
increasing the bias towards small degrees, fixes these problems.



The Robust Soliton Distribution 12

• The robust soliton distribution has two extra parameters, c and δ;
it is designed to ensure that the expected number of degree-one
checks is about

R ≡ c ln(K/δ)
√

K,

rather than 1, throughout the decoding process.

• The parameter δ is a bound on the probability that the decoding
fails to run to completion after a certain number K ′ of packets
have been received; c is a free parameter, with a value somewhat
smaller than 1 giving good results in practice.

• Luby’s key result is that (for an appropriate value of the constant c)
receiving K ′ = K + 2 ln(R/δ)R checks ensures that all packets
can be recovered with probability at least 1 − δ.

Example: 10000 packets 13

• In practice, LT codes can be tuned so that a file of original size
K ≃ 10 000 packets is recovered with an overhead of about 5%.

Histograms of the actual number of
packets required for a couple of
settings of the parameters, achieving
mean overheads Z smaller than 5%
and 10% respectively.

top: c = 0.01, δ = 0.5
(R = 10, K/R = 1010, Z ≃ 1.01)

middle: c = 0.03, δ = 0.5
(R = 30, K/R = 337, Z ≃ 1.03)

bottom: c = 0.1, δ = 0.5
(R = 99, K/R = 101, Z ≃ 1.1) 10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

Application: Storage 14

• You wish to make a backup of a large file, but you are aware that
your magnetic tapes and hard drives are all unreliable in the sense
that catastrophic failures, in which some stored packets are
permanently lost within one device, occur at a rate of something
like 10−3 per day. How should you store your file?

• A digital fountain can be used to spray encoded packets all over the
place, on every storage device available. Then to recover the
backup file, whose size was K packets, one simply needs to find
K ′ ≃ K packets from anywhere. Corrupted packets do not matter;
we simply skip over them and find more packets elsewhere.

Digital Fountain RAID 15

• This method of storage also has advantages in terms of speed of
file recovery. In a hard drive, it is standard practice to store a file in
successive sectors of a hard drive, to allow rapid reading of the file;
but if, as occasionally happens, a packet is lost (owing to the
reading head being off track for a moment, giving a burst of errors
that cannot be corrected by the packet’s error-correcting code), a
whole revolution of the drive must be performed to bring back the
packet to the head for a second read. The time taken for one
revolution produces an undesirable delay in the file system.

• If files were instead stored using the digital fountain principle, with
the packets stored in one or more consecutive sectors on the drive,
then one would never need to endure the delay of re-reading a
packet; packet loss would become less important, and the hard
drive could consequently be operated faster, with higher noise level,
and with fewer resources devoted to noisy-channel coding.



Application: Brodcast 16

• Imagine that ten thousand subscribers in an area wish to receive a
digital movie from a broadcaster. The broadcaster can send the
movie in packets over a broadcast network – for example, by a
wide-bandwidth phone line, or by satellite.

• Imagine that not all packets are received at all the houses. Let’s say
f = 0.1% of them are lost at each house. In a standard approach in
which the file is transmitted as a plain sequence of packets with no
encoding, each house would have to notify the broadcaster of the
fK missing packets, and request that they be retransmitted. And
with ten thousand subscribers all requesting such retransmissions,
there would be a retransmission request for almost every packet.

• Thus the broadcaster would have to repeat the entire broadcast
twice in order to ensure that most subscribers have received the
whole movie, and most users would have to wait roughly twice as
long as the ideal time before the download was complete.

Fountain Broadcast 17

• If the broadcaster uses a digital fountain to encode the movie, each
subscriber can recover the movie from any K ′ ≃ K packets. So
the broadcast needs to last for only, say, 1.1K packets, and every
house is very likely to have successfully recovered the whole file.

• Another application is broadcasting data to cars. Imagine that we
want to send updates to in-car navigation databases by satellite.

• There are hundreds of thousands of vehicles, and they can receive
data only when they are out on the open road; there are no
feedback channels. A standard method for sending the data is to
put it in a carousel, broadcasting the packets in a fixed periodic
sequence. ‘Yes, a car may go through a tunnel, and miss out on a
few hundred packets, but it will be able to collect those missed
packets an hour later when the carousel has gone through a full
revolution (we hope); or maybe the following day. . .’

• If instead the satellite uses a digital fountain, each car needs to
receive only an amount of data equal to the original file size (+5%).

Details of the Robust Soliton 18

•We define a positive function

τ (d) =











R
K

1
d for d = 1, 2, . . . (K/R)−1

R
K ln(R/δ) for d = K/R

0 for d > K/R

then add the ideal soliton distribution ρ to τ and renormalize to
obtain the robust soliton distribution, µ.

• The number of encoded packets required at the receiving end to
ensure that the decoding can run to completion, with probability at
least 1 − δ, is K ′ = K[

∑

d ρ(d) + τ (d)].

• Luby’s analysis explains how the small-d end of τ has the role of
ensuring that the decoding process gets started, and the spike in τ
at d = K/R is included to ensure that every source packet is likely
to be connected to a check at least once.


