	POTENTIAL PROBLEMS WITH LARGE BLOCKS				
C310 – Information Theory Sam Roweis	 Using very large blocks could potentially cause some serious practical problems with storage/retrieval of codewords. 				
	 In particular, if we are encoding blocks of K bits, our code will have 2^K codewords. For K ≈ 1000 this is a huge number! How could we even store all the codewords? How could we retrieve (look up) the N bit codeword corresponding to a given K bit message? How could we check if a given block of N bits is a valid codeword or a forbidden encoding? 				
Lecture 16:					
Equivalent Codes & Systematic Forms					
	• Last class, we saw how to solve all these problems by representing the codes <i>mathematically</i> and using the magic of <i>linear algebra</i> .				
November 9, 2005	• The valid codewords formed a subspace in the vector space of the finite field Z_2^N .				
Recall that Shannon's second theorem tells us that for any noisy channel, there is some code which allows us to achieve error free transmission at a rate up to the capacity. However, this might require us to encode our message in very long blocks. Why? Intuitively it is because we need to add just the right fraction of redundancy; too little and we won't be able to correct the erorrs,	 Using aritmetic mod 2, we could represent a code using either a set of basis functions or a set of constraint (check) equations, represented a generator matrix G or a parity check matrix H. Every linear combination basis vectors is a valid codeword & all valid codewords are spanned by the basis; similarly all valid codewords satisfy every check equation & any bitstring which satisfies all equations is a valid codeword. 				
too much and we won't achieve the full channel capacity. For many real world situations, the block sizes used are thousands of bits, e.g. $K = 1024$ or $K = 4096$.	• The rows of the generator matrix form a basis for the subspace of valid codes; we could encode a source message s into its transmission t by simple matrix multiplication: $t = sG$.				
n bits, e.g. n = 1024 of n = 4030.	• The rows of the parity check matrix <i>H</i> form a basis for the complement of the code subspace and represent check equations that must be satisfied by every valid codeword. That is, all				

Repetition Codes and Single Parity-Check Codes 4	Manipulating the Generator Matrix				
• An $[N, 1]$ repetition code has the following generator matrix: $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ for N=4 Here is a parity-check matrix for this code: $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ • One generator matrix for the $[N, N - 1]$ single parity-check code is the following: $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ Here is the parity-check matrix for this code: $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	• We can apply the same elementary row operations to a generation matrix for a code, in order to produce another generator matrix, since these operations just convert one set of basis vectors to another. Example: Here is a generator matrix for the [5, 2] code we have been looking at: $\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$ Here is another generator matrix, found by adding the first row the second: $\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ Note: These manipulations leave the set of codewords unchangee but they <i>don't</i> leave the way we encode messages by computint t = sG unchanged!				
MANIPULATING THE PARITY-CHECK MATRIX 5 • There are usually many parity-check matrices for a given code. We can get one such matrix from another using the following "el- ementary row operations", which don't alter the solutions to the equations the parity-check matrix represents	 EQUIVALENT CODES Two codes are said to be <i>equivalent</i> if the codewords of one are justile the codewords of the other with the order of symbols permuted. Permuting the order of the columns of a generator matrix will produce a series for an equivalent and similarly for a generator. 				
• There are usually many parity-check matrices for a given code. We can get one such matrix from another using the following "el- ementary row operations", which don't alter the solutions to the equations the parity-check matrix represents.	• Two codes are said to be <i>equivalent</i> if the codewords of one are just the codewords of the other with the order of symbols permuted.				
 There are usually many parity-check matrices for a given code. We can get one such matrix from another using the following "el- ementary row operations", which don't alter the solutions to the 	 Two codes are said to be <i>equivalent</i> if the codewords of one are just the codewords of the other with the order of symbols permuted. Permuting the order of the columns of a generator matrix will produte a generator matrix for an equivalent code, and similarly for a parity of the columns of a generator matrix for an equivalent code. 				

GENERATOR & PARITY MATRICES IN SYSTEMATIC FORM 8

- Using elementary row operations and column permutations, we can convert any generator matrix to a generator matrix for an equivalent code that is is *systematic form*, in which the left end of the matrix is the identity matrix.
- Similarly, we can convert to the systematic form for a parity-check matrix, which has an identity matrix in the right end.
- For the [5,2] code, only permutations are needed. The generator matrix can be permuted by swapping columns 1 and 3:

00	1 1	1]	_	1	0	0	1	1]
11	0 0	1	~	0	1	1	0	1

• When we use a systematic generator matrix to encode a block s as $\mathbf{t} = \mathbf{s}G$, the first K bits will be the same as those in s. The remaining N - K bits can be seen as "check bits".

More on Hamming Distance

- Recall that the Hamming distance, d(u, v), of two codewords u and v is the number of positions where u and v have different symbols.
- This is a proper distance, which satisfies the *triangle inequality*:

$$d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$$

• Here's a picture showing why:

Relationship B/W Generator & Parity Matrices 9

• If G and H are generator and parity-check matrices for C, then for every s, we must have $(\mathbf{s}G)H^T = \vec{0}$ — since we should only generate valid codewords. It follows that

$$GH^T = \vec{0}$$

- Furthermore, any H with N-K independent rows that satisfies this is a valid parity-check matrix for C.
- Suppose G is in systematic form, so for some P,

$$G = [I_K \mid P]$$

 \bullet Then we can find a parity-check matrix for ${\mathcal C}$ in systematic form as follows:

$$\begin{split} H &= \left[-P^T \mid I_{N-K} \right] \\ \text{since } GH^T &= -I_K P + PI_{N-K} = \vec{0}. \\ \text{(Note that in } Z_2, -P^T = P^T.) \end{split}$$

MINIMUM DISTANCE AND DECODING

11

- A code's *minimum distance* is the minimum of $d(\mathbf{u}, \mathbf{v})$ over all distinct codewords \mathbf{u} and \mathbf{v} .
- If the minimum distance is at least 2t+1, a nearest neighbor decoder will always decode correctly when there are t or fewer errors.
- Here's why: Suppose the code has distance $d \ge 2t + 1$. If **u** is sent and **v** is received, having no more than t errors, then $-d(\mathbf{u}, \mathbf{v}) \le t$.

 $-d(\mathbf{u}, \mathbf{u}') > d$ for any codeword $\mathbf{u}' \neq \mathbf{u}$.

From the triangle inequality:

$$d(\mathbf{u}, \mathbf{u}') \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{u}')$$

• It follows that

 $d(\mathbf{v}, \mathbf{u}') \ge d(\mathbf{u}, \mathbf{u}') - d(\mathbf{u}, \mathbf{v}) \ge d - t \ge (2t + 1) - t \ge t + 1$

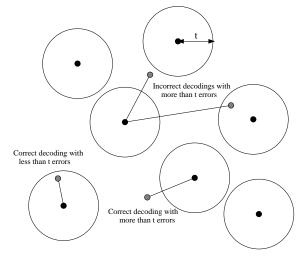
The decoder will therefore decode correctly to \mathbf{u} , at distance t, rather than to some other \mathbf{u}' .

A PICTURE OF DISTANCE AND DECODING

12

13

• Here's a picture of codewords (black dots) for a code with minimum distance 2t + 1, showing how some transmissions are decoded:



MINIMUM DISTANCE FOR LINEAR CODES

- To find the minimum distance for a code with 2^K codewords, we will in general have to look at all $2^K(2^K-1)/2$ pairs of codewords.
- But there's a short-cut for linear codes...
- Suppose two distinct codewords \mathbf{u} and \mathbf{v} are a distance d apart. Then the codeword $\mathbf{u} \mathbf{v}$ will have d non-zero elements. The number of non-zero elements in a codeword is called its *weight*.
- Conversely, if a non-zero codeword \mathbf{u} has weight d, then the minimum distance for the code is at least d, since $\vec{0}$ is a codeword, and $d(\mathbf{u}, \vec{0})$ is equal to the weight of \mathbf{u} .
- So the minimum distance of a linear code is equal to the minimum weight of the $2^{K}-1$ non-zero codewords. (This is useful for small codes, but when K is large, finding the minimum distance is difficult in general.)

EXAMPLES OF MINIMUM DISTANCE AND ERROR CORRECTION FOR LINEAR CODES 14

 \bullet Recall the [5,2] code with the following codewords:

00000 00111 11001 11110

- The three non-zero codewords have weights of 3, 3, and 4. This code therefore has minimum distance 3, and thus can correct any single error since (2t + 1 = 3 for t = 1).
- The single-parity-check code with ${\cal N}=4$ has these codewords:

 $0000 \ 0011 \ 0101 \ 01101001 \ 1010 \ 1100 \ 1111$

• The smallest weight of a non-zero codeword above is 2, so this is the minimum distance of this code. This is too small to guarantee correction of even one error. (Though the presence of a single error can be *detected*.)

FINDING MINIMUM DISTANCE FROM A CHECK MATRIX 15

- \bullet We can find the minimum distance of a linear code from a parity-check matrix for it, H.
- The minimum distance is equal to the smallest number of linearly-dependent columns of H.
- Why? A vector u is a codeword iff uH^T = 0. If d columns of H are linearly dependent, let u have 1s in those positions, and 0s elsewhere. This u is a codeword of weight d. And if there were any codeword of weight less than d, the 1s in that codeword would identify a set of less than d linearly-dependent columns of H.
- Special cases:
 - If H has a column of all zeros, then d = 1.
 - If H has two identical columns, then $d \leq 2$.
 - For binary codes, if all columns are distinct and non-zero, then $d\geq 3.$