strikingly contrary to generally

Sometimes a mathematical result is
held belief even though an obvi-

of Stanford Un!\fersny discovered such
‘aparadox in statistics in 1955. His result
dermined a century and a half of
ork on estimation theory. going back
yKarl Friedrich Gauss and Adrien Ma-
e Legendre. After a long period of re-
tireistance to Stein's ideas. punctuated by
s#hfrequent and sometimes angry debate,
e sense of paradox has diminished and
tein's ideas are being incorporated
to applied and theoretical statistics.

/Stein’s paradox concerns the use of ob-

ble quantities. Averaging is the second
ost basic process in statistics, the first
ing the simple act of counting. A base-
all player who gets seven hits in 20 offi-
al times at bat is said 1o have a batting

stic we are forming an estimate of the
layer s true batting ability in terms of
s observed average rate of success.
sked how well the player will do in his
ext 100 times at bat, we would proba-
ly predict 35 more hits. In traditional
talistical theory it can be proved that
0 other estimation rule is uniformly
etter than the observed average.

+The paradoxical element in Stein’s re-
EE 1s that it sometimes contradicts this
tmentary law of statistical theory. If
€ have three or more baseball players,
nd if we are interested in predicting fu-
¢ batting averages for each of them.
len there is a procedure that is better
an simply extrapolating from the
te separate averages. Here “better
25 a strong meaning. The statistician
0 employs Stein’s method can expect
redict the future averages more ac-
ately no matter what the true bat-
abilities of the players may be.

Basetsall is a sport with a large and
w carefully compiled body of statis-
€5, which supplies convenient material
or iflustrating the workings of Stein’s
lethod. As our primary data we shall
Onsider the batting averages of 18 ma-

by Bradley Efron and Carl Morris

jor-league players as they were recorded
after their first 45 times at bat in the
1970 season. These were all the players
who happened to have batted exactly 45
times the day the data were tabulated. A
batting average is defined. of course.
simply as the number of hits divided by
the number of times at bat; it is alwaysa
number between 0 and 1. We shall de-
note each such average by the letter y,
The first step in applying Stein’s meth-
od is to determine the average of the
averages. Obviously this grand average.
which we give the symbol ¥ must alse
lie between 0 and 1. The essential proc-
ess in Stein's method is the “shrinking”
of all the individual averages toward
this grand average. If a player's hitting
record is better than the grand average,
then it must be reduced; if he is not hit-
ting as well as the grand average, then
his hitting record must be increased. The
resulting shrunken value for each player
we designate z. This value js the James-
Stein estimator of that player's batling
ability. named {or Stein and W. James,
who topether proposed a particularly
simple version of the method in 1961.
Stein’s paradox is simply that the z val-
ues, the James-Stein estimators, give
better estimates of true batting ability
than the individual batting averages.
The James-Stein estimator for each
player is found through the following
equation: z = 7 + ¢(y — . The quantity
— 7 is the amount by which the play-
er's batting average differs from the
grand average. The equation thus states
that the James-Stein estimator z differs
from the grand average by this same
quantity (y — 7 multiplied by a con-
stant. ¢. The constant ¢ is the “shrinking
factor." If it were equal to 1. then the
equation would state that the James-
Stein estimator for a given player is
identical with that player's batting aver-
age: in other words, y equals z Stein’s
theorem states that the shrinking factor
is always less than 1. Its actual value is
determined by the collection of all the
observed dverages.
In the case of the baseball data, the
grand average ¥is.265 and the shrinking

Stein’s Paradox in Statistics

The best guess about the future is usually obtained by computing
the average of past events. Stein’s paradox defines circumstances

in which there are estimators better than the arithmetic average

factor cis .212. Substituting these values
in the equation, we find that for each
player z equals 265 + 212(§y — .265).
Because ¢ is about .2. each average
will shrink about 80 percent of the dis-
tance to the grand average, and the total
spread of the averages will be reduced
about 80 percent.

As an example consider the late Ro-
berto Clemente, who was the leading
batter in the major leagues when our
statistics were compiled. For Clemente
» is equal to .400. and z can be deter-
mined by evaluating the expression
z = 265+ 212(400 ~ 265). The re-
sult is .294. In other words. Stein's theo-
rem states that Clemente’s true batting
ability is best estimated not by .400 but
lies closer to .294. Thurman Munson,
in a batting slump early in the 1970 sea-
son, had an average of only .178. Sub-
stituting this value in the equation, we
find that his estimated batting ability is
substantially increased: the James-Stein
estimator for Munson is .247.

hich set of values, y or z, is the
better indicator of batting ability
for the 18 players in our example? In
order 1o answer that question in a pre-
cise way one would have to know the
“true batting ability” of each player.
This true average we shall designate
with 8 (the Greek letter theta). Actuaily
it is an unknowable guantity, an abstrac-
tion representing the probability that a
player will get a hit on any given time at
bat. Although 8 is unobservable, we
have a good approximation to it: the
subsequent performance of the batters.
It is sufficient to consider just the re-
mainder of the 1970 season. which in-
cludes aboui nine times as much data as
the preliminary averages were based on.
The expected statistical error in such a
sample is small enough for us to neglect
it and proceed as if the seasonal average
were the “true batting ability” 6 of a
player. That is one reason for choosing
batting averages for this example. In
most problems the true value of 8 can-
not be determined.
One method of evaluating the two es-
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BATYING ABILITIES of 18 major-league baseball players are estimated maore accurately by the method of

o INITIAL AVERAGE Charles Stein and W. James than they are by the individual batting averages. The averages employed as estima-
tors are those calcuiated affer each player had had 45 times at bat in the 1970 season. The frue batting ability

SEASON AVERAGE of a player is an unobservable guantity, but it is clesely approximated by his long-term average performance
Here the true ability is represenfed by the batting average maintained during the remainder of the 1976 season-

=] JAMES-STEIN For 16 of the piayurs the initial average is inferior to another number, the James-Stein estimator, as a predictor
al ESTIMATOR of hatting ability. The James-Siein estimators, considered as a group, also have the smaller total squared error




Zimates is by simply counting their suc-
-cesses and failures. For 16 of the 18
splayers the James-Stein estimalor z is
“eloser than the observed average y to the
~pue.” or seasonal, average 6. A mote
i"guantitative way of comparing the two
: technigues is through the total squared
!grror of estimation This is measured by
;first determining the actual error of cach
“prediction, given by (6 — y) and (8 ~ o).
“ for each player. Each of these quantities
i then sguared and the squared values
“are added up. The observed averages v
“have a total squared error of 077
\-whereas the squared error of the James-
“Siein estimators is only 022 By this
“.comparison. then. Stein's method is 3 5
“times as accurate. I can be shown thal
“for the data given 3 5§ is close Lo the cx-
ected ratio of the total squared errors
{ the two methods We have not just
cen lucky

Su;}pose a statistician makes a random
sampling of automobiles in Chicago
nd finds that of the first 45 recorded
ine are foreign-made and the remain-
ng 36 are domestic. We want to esti-
mate the true proportion of imported
ars in Chicago. a quintity represented
y another unobservable  The ob-
erved average of 9/45 = 200 is one es-
imate. Another can be obtained by sim-
ly lumping this problem together with
J3that of the 18 baseball players. Substi-
wuting the value .200 in the equation
sed in that problem gives a James-Stein
imator of 251 for the imported-car
atio (Actually the addition of a 19th
alue changes the grand average ¥ and
Iso slightly alters the shrinking factor ¢
The changes are small. however; the
mended value of z1s 249.))
n this case intuition argues strongly
hat the observed average and not the
ames-Stein estimator must be the bet-
tr predictor. Indeed. the entire proce-
ure seems silly: what could batting av-
rages have to do with imported cars? It
§ here that the paradoxical nature of
tein's theorem is most uncomfortably
pparent. The theorem applies as well to
he 19 problems as it did to the original
8. There is nothing in the statement of
hé theorem that requires the compo-
ent problems to have some sensible rc-
ilion to one another.
The same disconcerting indilfercnce
O common sense can be demonsirated
«i.another way What does Clemenie s
400 observed average have to do with
lax Alvis. who was poorest in batting
mong the 18 players? If Alvis had had
N early-season hitting streak. batting
2y 444 instead of his actual 156, the
‘Bmes-Stein estimator for Clemente’s
;average would have been increased
Sirom 294 to 325. Why should Alvig’

.§<§§CCESS or lack of it have any influence

200 our estimate of Clemente's ability?
They were not even in the same league )
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JAMES-STEIN ESTIMATORS

YAMES-STEIN ESTIMATORS for the 18 bascball players were calculated by “shrinking” the
individeal batting averages {oward the overall “avernge of fhe averages.” In this case the grand
ascrage is 265 and each of the avernges is shrunk about 80 percent of the distance to this value.

Thus the theorem on which Stein's method is

based asserts that the frue batting abilitics are

more tightly clustered than the preliminary bafling averages wounld seem to suggest they are.

It is questions of this kind that have
been raised by crifics of Stein’s method
In order to reply to them it will be neces-
sary to describe the method rather more
carefully

Taking an average is an easy and fa-
miliar process that seems to need no
justification Actually it is not obvious
why the average is so often useful in
estimating the true center of gravity of a
random process. The explanation lies in
the distribution that the values of the
random variable tend to assume.

The distribution most common in sci-
eatific work is the "normal” distribu-
tion. described by a bell-shaped curve; it
was first investigated in depth by Gauss
and is sometimes called the Gaussian
distribution. It is constructed by assum-
ing that the random variable can take on
any value along some axis; the probabil-
ity that it falls within any given interval
is then made equal to the area under the
same interval of the bell-shaped curve
The curve is completely specified by two
parameters: the mean. ¢, which lies at
the peak of the curve. and the standard
deviation. which measures how closely
the values are distributed around the
mean. It is customary to assign the stan-
dard deviation the symbol o (sigma)
The larger the standard deviation is. the
more widely dispersed the data are.

In probability theory @ known meen
and standard deviation are employed to
predict future behavior. A problem in
statistics proceeds in the opposite direc-
{ion: {rom observed data the statistician
must infer the mean 8 and the standard
deviation o

Suppose, for example. the measure-
ment of some random variable x yields

the five successive values 10 0.9 4. 103,
8 6 and 9.7 Suppose further the values
are known to be part of a normal distyi-
bution with a standard deviation of 1.
What is the value of the true mean 47 In
principie the mean could have any val-
ue. but some values are more likely than
others. A mean of 6.5. for example,
would require that all five values be un-
der the extreme tail of the curve and that
none be found near the center. Gauss
showed that among all possible choices
for the mean, the average ¥ of the ob-
served data {which in this case has a val-
ue of 9.6) maximizes the probability of
obtaining the data actually seen. In this
sense the average is the most likely esti-
mate of the mean; in fact. Gauss con-
structed the normal distribution just so
that it would have this property.

There is 2 further justification, also
pointed out by Gauss. for choosing the
average as the best estimator of the un-
observable mean 6. Gauss noted that the
average of the data is an "unbiased” esli-
mator of the mean, in the sense that it
{avors no selected value of 8. To be
more precise. the average is unbiased
because the expected value of X equals
the true & no matter what 8 may be.
There are infinitely many unbiased esti-
maiors of #, none of which estimates &
perfectly. Gauss showed that the expect-
ed squared error of estimation for the
average X is Jower than that for any oth-
er linear, unbiased function of the obser-
vations. In the 1940 it was demonstrat-
ed that no other unbiased function of the
data. whether it is linear or nonlinear.
can estimate & more accurately than the
average, in terms of expected squared
error. An essential contribution to that
proof had been made in the 1920's by

121

e
rn

T

(LT 1 Lk L




|

R. A Fisher, who showed that all the in-
formation about & that can possibly be
found in the data is contained in the av-
erage x

In the 1930's a mathematically more
rigorous appioach to statistical infer-
ence was undertaken by Jerzy Neyman.
Egon S. Pearson and Abraham Wald:
the ideas they developed are part of
what is now known as statistical deci-
sion theory, They discarded the require-
ment of unbiased estimation and exam-
ined all functions of the data that could
serve as estimators of the unknown
mean & These estimators were com-
pared through a risk function. defined as
the expected value of the squared error
for every possible value of 6.

Consider three cormnpeting estimators:
the average of the data. © hall that aver-
age, /2. and the median of the data. or
middle value. For both the average and
the median the risk function is constant;
that is merely anothey way of saying that
their expected squared error in predict-
ing the mean & is the same no matter
what the value of 8 really is. Of the two
constant risk functions. the one for the
average ¥ is uniformiy smaller by a fac-
tor of about two-thirds; clearly the aver-
age is the preferred estimator. In the lan-
guage of decision theory the median is
said to be “inadmissible” as an estirnator
of 8. since there is another estimator
that has a smaller risk (expected squared

error) no matter what @ is. (It shouid be
mentioned. however. that when the data
have a distribution other than the nor-
mal one. it is possible for the order of
preference to be reversed )

For the estimator ¥/2. which is biased
toward the value 8 == 0. the risk function
is not constant; this estimator is accurate
if & happens be close to zero, but the
expected squared error increases rapid-
ly as the true mean departs from zero
The risk function describes a parabola.
with the minimum point at # = 0; if the
rmean does happen to be zero. then the
risk function for ¥/2 is four times small-
er than that for the average itself. At
large values.of the mean. however. the
average ¥ regains its superiority. With
other estimators we can poke down the
risk function below that of the average
at any point we wish to. but it always
pops up again somewhere ¢lse.

There remains the possibiiity that
some other estimator has a risk that is
uniformly lower than that of the aver-
age In 1950 Colin R. Blyth. Erich L
Lehmann and Joseph L. Hodges. Ir.
proved that no such estimator exists. In
other words. the average ¥ is admissi-
ble. at least when it is applied to one set
of observations for the purpose of esti-
mating one unknown mean.

Stein's theorem is concerned with the
estimation of several unknown means.
No relation between the means need be
assumed: they can be batting abilities or

proportions of imposted cars. On the
other hand. the means are assumed (o be
independent of one another. In evaluat-
ing estimators for these means it is once’
again convenient to employ a risk func.
tion defined as the sum of the expected
values of the squared errors of estima-
tion {or all the individual means

he obvious frst choice of an estima-

L tor for each of several means is the
average of the data related to that mean.
The entire historical development of
statistical theory from Gauss through'
decision theory argues that the average
is an admissible estimator as long as
there is just one mean, 8, to be estimat.- 5
ed Stein showed in 19335 that the aver. =¥
age is also admissible for estimating two 2
means Stein’s paradox Is simply his
proof that when the number of means’
exceeds two. estimating each of them by,
its own average is an inadmissible pro-
cedure. No matter what the values of
the true means. there are estimation®
rules with smailer total risk
In 1955 Stein was able to prove this:
proposition only in those cases where’
the number of means. a quantity we
shall designate k. was very large Stein's
1961 paper written in collaboration with;
James exiended the result to all values
of k greater than 2; moreover. it did so in’
a constructive manner Stein and James
not only showed that estimators must
exist that are everywhere superior to the
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NORMAL DISTRIBUTION of a2 random variable around the mean
value of that variable provides the fundamental justifieation for esti-
mation by averaging. The distribution is defined by tbve parameters,
the mean, 8, which focates the ceniral peak of the distribution, and
the standard deviation, o, which measures how widely scaftered the

data points are. It is assemed jn defining the distribution that the var
jable x can take on any value on the x axis. The most likely value o
£ is, by definition, the mean ¢. The probability that x fies within any
given interval on the axis, such as that between the points a and b
is equal to the area under the bell-shaped curve between those points
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averages; they were also able 10 provide
an example of such an estimator
. “The James-Stein estimator has al-
ready been defined in our investigation
of batting averages. It is given by the
equation z = J -+ c(y — ), where y is the
average of a single set of data, ¥ is the
orand average of averages and ¢ is a
“shrinking factor.” There are several
ther expressions for the James-Stein es-
imator, but they diffier mainly in detail.
1 of them have in common the shrink-
ing factor ¢, it is the definitive character-
tic of the James-Stein estimator.
In the baseball problem ¢ was treated
s if it were a constant. Actually it is
etermined by the observed averages
nd therefore is not a constant. The
+shrinking factor is given by the equation

= (k — 3)o?
UESEN

Here k is again the number of unknown
means. o2 is the square of the standard
eviation and T(y — 72 is the sum of the
quared deviations of the individual av-
rages y from the grand average J

Let us briefly explore the meaning of

factor ¢ becomes smaller {(and the pre-
dicted means are more severely affected

smaller On the other hand, ¢ increases.
approaching unity. and the shrinking is
less drastic as the expression Z{y - 7)®
increases.

What do these eguations mean in
terms of the behavior of the estimator?
In effect the James-Stein procedure
makes a preliminary guess that all the
‘tnobservable means are near the grand
average ¥. If the data support that guess
in the sense that the observed averages
are themselves not too far from }, then
the estimates are all shrunk further
toward the grand average. If the guess is
_contradicted. then not much shrinking is
done These adjustments to the shrink-
ing factor are accomplished through the

ROBLEM IN STATISTICS is to deduce from 2 set of daia the
true mean and standard deviation of the distribution. Even when it is
mown that the distribution is 2 normal one and that the standard de-
dation is 1, the mean conld in principle have any valne. Some val-
es, however, are more likely than others. For example, the five daia

8 9

efficct the distribution of averages
around the grand average j has on the
equation that determines ¢ The number
of means being estimated also influ-
ences the shrinking factor. through the
termm {k — 3} appearing in this same
equation, If there are many means. the
equation allows the shrinking to be
more drastic. since it is then less likely
that variations observed represeni mere
random fluctuations.

With ¢ calculated in this manner, the
risk function for the James-Stein estima-
tor is less than that for the sample aver-
ages no matter what the true values of
the means 8 happen to be. The reduction
of risk can-be substantial. particularly
when the number of means is larger than
five or six. The risk function is not con-
stant for all values of the true mean 6, as
it is for the observed averages. The risk
of the James-Stein estimator is smallest
when all the truc means are the same. As
the true means depart {from one another
the risk of the estimator increases. ap-
proaching that of the observed averages
but never quite equaling it. The James-
Stein estimator does substantially better
than the averages only if the true mcans
lie near each other. so that the initial
guess involved in the technique is con-
firmed Whal is surprising is that the es-
timator does at least marginally better
no matter what the true means are.

The expression for the ] ames-Stein es-
timator that we have employed refers all
observed averages to the grand average
7. This procedure is not the only one
possible; other expressions for the esti-
mator dispense with j entirely. What
cannot be avoided is the introduction of
some more or less arbitrary initial guess
or point of origin for the estimator. The
observed averages. it will be noted, do
niot depend on a choice of origin. Before
Stein discovered his method it was felt
that such “invariant” estimators must be
preferable to those whose predictions
change with each choice of an origin
The theory of invariance. to which Stein
had been-a principal contributor. was

" i2
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points (x) given here could be described by a normal distribution with
a mean of 6.5 only if all five points were more than two standard de-
viations above the mean. It can be shown that the daia are most fikely
to be penerated by a distribution with 2 mean equal to the observed
average of the data, denoted & In this case the average is equal to 5.6.

badly shaken by the James-Stein coun-
terexample From the standpoint of
mathematics this is the most unsettling
aspect of Stein’s theorem. Indeed. the
par‘adoxwasnotdiscoveredearlieriarge~
ly because of a strong prejudice that the
estimation problem, being stated with-
out reference o any particular origin.
should be solved in a similar way.

Applications of Stein’s method tend to
involve large sets of data with
many unknown parameters Some of
the difficulties of such problems. as weil
as the practical potential of the method
itself, can be illustrated by an exam-
ple: an analysis of the distribution of the
disease toxoplasmosis in the Central
American country of El Salvador

Toxoplasmosis is a disease of the
blaod that is endemic in much of Cen-
tral America and in other regions of the
Tropics. In El Salvador roughly 5.000
people drawn in varying numbers from
36 cities were tested for toxoplasmosis.
The observed rate of incidence for each
city can conveniently be expressed by
comparison with the national rate {that
is, with the grand average J) A mea-
sured rate of .050. for example. denotes
a city with an incidence of the disease’'5
percent higher than the national aver-
age. The measured rates have an ap-
proximately normal distribution The
standard deviations of these distribu-
tions are known. but they differ from
city to city. depending inversely on how
large a sample population was tested in
that city. It is the task of the statistician
to estimate the true mean & of the distri-
bution for each city from the measured
incidence y

In this case the appropriate form of
the JTames-Stein estimator is z = ¢y The
simplification, which was introduced by
us. 15 made possible by the chosen man-
ner of expressing the observations. y
They are defined in such a way that the
grand average ¥ 15 Zero, and terms con-
taining ¥ therefore drop out of the equa-
tion On the other hand. the estimation
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VARIOUS ESTIMATORS of a single true mean, 4, can be evaluated by way of a risk Func-
tion. The risk is defined as the expected value of the squared error of estimation, considered ns
n function of the mean 6. The avernge of the dat, T, is an estimator with o constant risk func-
tion: no matter what the true mean is, the expected value of the squared error is the same. The
median, or middie value, of the data alse has constant risk, bat it is everywhere greater (by a
factor of 1.57) than the risk of the average. Half the average (£/2) is an estimator whose risk
depends on the actual value of the meap; the risk is smallest when the mean is near zero and in-
creases rapidly when the mean departs from zero. For the estimation of a singie mean there is
no estimator with a risk Function that is everywhere less than the risk function of the average ¥.

12g2

OBSERVED AVERAGES

100

JAMES-STEIN
ESTIMATORS

TOTAL RiSK
[o)]
g
n

42

20.2 -

0 i I | ! I
0 102 202 3002 4po2 5Cu?
TOTAL SQUARED DEVIATION OF MEANS FROM THEIR AVERAGE

TOTAL RISK FUNCTION for the James-Stcin estimators is everywhere less than that for
the individual observed averages, as long as the number of means being estimated is greater
than two. In this case there are 10 unknewn means. The risk is smallest when all the means are
clustered at a singie point As the means depart from one another the risk of the Jumes-Stein

‘estimators increases, approaching that of the observed averages hut never guite reaching it
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procedure is now complicated by ik,
fact that the shrinking factor ¢ is differ
ent for each city. varying inversely a
the standard deviation of p for that city
This dependence of the shrinking facte
on the standard deviation has a simp]
intuitive rationale. A large standard de
viation implies a high degree of random
ness or uncertainty in a measurement
If the measured incidence is unusug|
ly large. it can therefore be attribute
more reasonably to random fluctuation
within the normal distribution than to
genuinely large value of the true mea
0 It is thus proper to reduce this valy
drastically, that is. to apply a smal
shrinking factor.

The same argument can be made ever o
more forcefully by returning for 3
moment to baseball. Frank O'Connor
pitched for Philadelphia in the 1393 seq
son. He batted twice in his major-league
career. hitting successfully both times
His observed batting average is hence
1 000 The James-Stein rule for the 1§
piayers considered above estimates
O'Connor’s true batting ability to be
265 + 212(1 000 — 265) = 421 (ig:
noring the effect of the new data on the
grand average and on the shrinking fac.
tor). This is a silly estimate. although
not as silly as 1.000. A perfect average
after two times at bat is not at all incon: .
sistent with a true value in the range?
from .242 to .294 that is estimated for
the other players. The shrinking con- "2
stant ¢ applied to O'Connor’s average
should be severer in order to compen-
sate for the smaller amount of data
available for him.

For the El Salvador observations,
most of the shrinking factors are quitel);
gentle. between 6 and 9. but a few are
in the range from .1 to .3. Which set of
numbers should we prefer. the James-
Stein estimators or the measured rates
of incidence? That depends largely on
what we want to use the numbers for.

If the Minister of Health for El Salva-
dor intends to build local hospitals for
people suffering from toxoplasmosis,
the James-Stein estimators probably of-
fer the more reliable guidance. The rea-
son is that the expected value of the total
squared error is smaller for the Fames-
Stein estimators; in fact. it is smailer by
a factor of about three. The important
point in this calculation is that the ex-
pected error is added up for all the cities.
Any particular hospital might be the
wrong size or in the wrong place. but the
sum of all such mismatches would be
smaller for the James-Stein estimators
than for the observed rates,

The Tames-Stein estimators are also
likely to be preferable for determining
the ordering of the true means. In this
regard it is notable that the city with the
highest apparent incidence (according:
to the measured rates ») is ranked 12th23
according to the James-Stein estimators




The estimaie is drastically reduced be- as rainfall,
cause the sample was.very small in that
city. This information might be useful if
there were funds for only one hospital

" Suppose an epidemiologist wants to
investigate the correlation of the true in-

cidence in each city with atwribuotes such

the cases

ternperature, elevation or
population? Once again the James-Stein
estimators are preferred: a rough calcu-
lation shows that they would give a clos-
er approximation in about 70 percent of

There is one purpose for which the

" measured incldence may well be superi-
or 10 the JTames-Stein estimator: when a
single city is considered in isolation. As
we have seen, the Fames-Stein method
gives better estimates for a majority of
cities. and it reduces the total error of
estimation for the sum of ali cities It
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‘CIDENCE OF TOXOPLASMOSIS, a discase of the blood, was
rveyed in 36 cities in the Central American country El Salvador.
he measored ineidence in cach eity can be regarded as an estimator
the true incidence, which is unebservable. The measered incidence
s a normal distribution whose standard deviation is determined by

~.600 ~.500 -.400 —-.300

the number of people surveyed in that city. The measured rates are
expressed in terms of deviation from the national incidence (the aver-
age of the rates observed in all the cities). Thus zere denotes exactly
the national rate, and a city with a measwred incidence of —.040 would
have an observed rate 4 percent lewer than the counfry as a whoele,

OBSERVED AVERAGES
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t SHRINKJNG of the observed ioxoplasmosis rates to yield a sct of
i Jﬂmes Siein estimators substantinlly alters the appareat distribution
6f the disease. The shrinking factor is not the same for all the cities
bat instead depends on the standard deviation of the rate measured
0 that city. A large standard deviation implics that a measurement is
a5ed on a small sample and is subject to Iarge random fluctuations;

vl e’ 100 " 200

JAMES-STEIN ESTIMATORS

300 400

that measurement is therefore compressed more than the others are.
1n the Ei Salvador data the most extreme observations tend to be cor-
related with the largest standard deviations, again suggesting the un-
relinbitity of those measurements. Compared with the observed rates,
the James-Stein cslimators can be proved to have.a smaller total error..
af estimation. They also provide a more accurate ranking of the cities.
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cannot be demonstrated. however, that
Stein’s methed is superior for any par-
ticular city; in fact. the James-Stein pre-
diction can be substantially worse

Estimating the true mean for an isolat-
ed city by Stein's method creates se-
rious errors when that mean has an atyp-
ical value The rationale of the method
is to reduce the overall risk by assuming
that the true means are more similar to
one another than the observed data.
That assumption can degrade the esti-
mation of a genuinely atypical mean.
Now we see why imported cars should
not be included in the same calculations
with the 18 baseball players. There is a
substantial probability that the automo-
biles will be atypical

Suppose we ignore this hazard and
lump together all 19 problems; we can
then calculate the total expected
squared error as a function of the true
percentage of imported cars. It turns out
that the risk for both the baseball play-

ers and the automobiles is reduced only '

if the percentage of imported cars hap-
pens to lie in the same range as the esti-

mated batting averages: otherwise the
risk of error for both kinds of problem
is increased.

The question of whether or not a par-
ticular mean is “typical” is a subtle one
whose implications are not yet fully un-
derstood Returning to the problem of
toxoplasmosis in E1 Salvador, let us sin-
gle out for attention the city of Alegria,
which has the fifth-smallest measured
incidence of the disease; ~ 294. It is one
of four cities inciuded in the survey that
are east of the Rio Lempa; all four have
distinctly negative values of measured
incidence y It is plausible to suppose
that this is no coincidence and that the
rate of toxoplasmosis east of the Lempa
is genuinely lower. A James-Stein es-
timator that consolidates information
from the entire country therefore may
be less than optimal in these cities. We
have developed techniques for taking
advantage of extra information of this
kind. but the theory underlying those
techniques remains rudimentary.

An astute follower of baseball might
be aware that just as each player’s bat.
ting ability can be represented by a

Gaussian curve. so too the true batting
abilities of all major-league players
have an approximately normal distribu-
tion This distribution has a mean of
270 and a standard deviation of 013
With this valuable extra information.
which statisticians call a "prior distribu-
tion," it is possible to construct a superi-
or estimate of each player’s true batting
ability This new estimator, which we
shall give the label Z, is defined by the
equation Z = m + C{y -~ m). Here p is
again the observed batting average of
the player, but 7, the grand average, has
been replaced by m, the mean of the
prior distribution. which is known to
have the value 270 In addition there is
a different shrinking factor. C, which de-
pends in a simple way on the standard
deviation of the prior distribution (equal

to 015)

This procedure is not a refinement of
Stein's method; on the contrary. it

predates Stein's method by 200 years. It

is the mathematical expression of a

theorem published {posthumously} in

1763 by the Reverend Thomas Bayes
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UNRELATED PROBLEMS can be lumped

Stein’s method, but only at the risk of increasing error. To the 18
batting averages computed earlier, for example, one might add a 191k
number representing the proportion of imiported cars observed in
Chicapo. New James-Stein estimators could then be calculated for
bath the baseball players and the automobiies, based on the grand
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THUE PROPORTION OF IMPORTED CARS
together for analysis by

the risk function only

average of all 19 numbers. Nothing in the statement of Stein’s theo
rem prohibids such 3 procedure, but the evident iHogic of it has just
fiably been criticized. In fact, including the unrelated data can reduc

be near the mean batling average of 265; otherwisc the expected ¢
ror of estimation for hoth the cars and the basebail players is increased

if the propertion of imporited cars happens 104,



He was able to show that this estimator
minimizes the expected squared error
associated with the randomness in both
the observed averages () and in the true
means (&)
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Yy Herbert E. Robbins of Columbia
University In work begun in about 1951
Robbins demonstrated that it is possible
o achieve the same minimum risk asso-
Hated with Bayes's rule without knowl-
dge of the prior distribution. as long as
the number of means being estimated is
ery large. Robbins' theory was imme-
iately recognized as a fundamental
reakthrough; Stein's result, which
losely related. has been much slower in
aining acceptance.
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