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Abstract

This report offers several rationale for the Stein para-
dox. Sections 1 and 2 defines the multivariate nor-
mal mean estimation problem and introduces Stein’s
paradox. Sections 3–8 advances the Galtonian per-
spective and explains Stein’s paradox using regres-
sion analysis. Sections 9 and 10 approaches Stein’s
paradox through the conventional empirical Bayes
approach. The closing sections 11 and 12 compares
admissibility to equivariance and to minimaxity as
criteria for simultaneous estimation.

1 Estimating Mean of Multi-

variate Normal

Stein’s paradox arises in estimating the mean
of a multivariate normal random variable. Let
X1, X2, . . . , Xk be independent normal random vari-
ables, such that Xi ∼ N(θi, 1). All k random vari-
ables have a common known variance, but their un-
known means differ and vary separately. In other
words, (X1, X2, . . . , Xk) ∼ N(θ, I), where θ =
(θ1, θ2, . . . , θk) and I is the k × k identity matrix.
Consider estimating the mean θ under squared-
error loss L(θ, d) =

∑k
i=1 (θi − di)

2 = |θ − d|2. A
natural and intuitive estimate of θ would be X it-
self. Charles Stein showed that this näıve estimator
θ̂ = X is not even admissible. For k ≥ 3, the obvious
estimate X is dominated by

θ̂JS = (1−
k − 2

S2
)X,where S2 =

k∑

i=1

X2i . (1)

The James-Stein estimator θ̂JS shrinks the näıve

estimate towards zero by a factor 1 − k−2
S2
, where

S2 =
∑
X2i depends on the other random variables.

Although the risk is optimal for k−2, more generally,
for k ≥ 3 and 0 < c < 2(k − 2), any estimator of the
form

θ̂JSi = (1−
c

S2
)Xi (2)

has uniformly smaller risk for all θ. Similarly, for
k ≥ 4 and 0 < c < 2(k − 3), the family of Efron-
Morris estimator

θ̂EMi = X̄ + (1−
c

S′2
)(Xi − X̄), (3)

where

S′2 =
k∑

i=1

(Xi − X̄)
2 (4)

dominates the näıve estimator X . In this case, the
optimal c = k − 3. The Efron-Morris estimators
shrink towards the mean X̄ rather than 0.
Because each Xi is independently distributed, es-
timating each θi as separate experiments would seem
intuitive. Paradoxically, combining observations ac-
tually provides a much better estimate of the means.
So Stein’s paradox states not only that the natu-
ral estimator X is not admissible, but also that X
is dominated by θ̂JS , an estimator which combines
independent experiments.

2 Stein’s Paradox Violates In-

tuition

On the surface, Stein’s paradox seems unacceptable.
Intuitively each independent experiment should not
affect the other experiments. For example, consider



Xi as test scores of each student in a class. Suppose
that Xi ∼ N(θi, 1), where θi is the theoretical IQ of
student i.
Given that each student takes his test indepen-
dently, the natural estimate of each student’s IQ
would be his individual test score. Since each stu-
dent took the test individually and separately, justice
dictates that each student be judged on his personal
performance. In particular, the natural estimate of
θi would intuitively be Xi.
Yet according to Stein’s paradox, the performance
of the entire class should be factored into the esti-
mate of each individual’s IQ. Rather than estimate
Tom’s IQ by his personal test score, Stein’s estimator
shrinks Tom’s IQ by a factor based on the standard
deviation of all test scores. Stein’s paradox asserts
that making use of test scores of the whole class pro-
vides a better estimate of each individual’s IQ.

3 Galtonian Perspective on

Stein’s Paradox

Consider pairs {(Xi, θi)|i = 1, 2, . . . , k}, where the
Xi’s are known but the θi’s are unknown. Since Xi ∼
N(θi, 1), write Xi = θi + Zi, where Zi ∼ N(0, 1).
BecauseXi are mutually independent, the Zi are also
mutually independent.
Francis Galton over a century ago offered a per-
spective that can shed light on Stein’s paradox. On
a graph with X as the horizontal axis and θ as the
vertical axis, the point (Xi, θi) would lie near the di-
agonal line θ = X . Because of the error term Zi, the
point (Xi, θi) is horizontally shifted from the diagonal
line θ = X by the random distance Zi.
Since EX̄ = θ̄ and V arX̄ = 1/k, the mean X̄
should be centered about θ̄. In other words, (X̄, θ̄)
should lie near the center diagonal line θ = X on the
X/θ coordinate system.

4 Regression Analysis Picture

Given an Xi, the corresponding θi can be estimated
using standard regression θ̂ = E[θ|X ]. The näıve es-

timate θ̂ = X , apparently agrees with X̂ = E[X |θ] =

θ, the regression line of X on θ. However, the regres-
sion line of X on θ is not appropriate in estimating θ
on the basis ofX . Instead the opposite regression line
should be used. Using the regression of θ on X would
provide a more meaningful estimate of θ. Since the
distribution of θ given X is unknown, the regression
line θ̂ = E[θ|X ] must be approximated.

5 Linear Regression Motivates

the Efron-Morris Estimator

The optimal estimator θ̂ = E[θ|X ] is unavailable be-
cause the distribution of θ given X is unknown. In-
stead, restrict attention to only linear estimators of
the form

θ̂i = a+ bXi, i = 1, 2, . . . , k. (5)

Minimizing the loss function L(θ, θ̂) =∑k
i=1 (θi − θ̂i)

2 is equivalent to finding the least
squares fit to {(Xi, θi)|i = 1, 2, . . . , k} in the X/θ
coordinate system. The usual least squares fit would
be

θ̂i = θ̄ + β̂(Xi − X̄),where β̂ =

∑
(Xi − X̄)(θi − θ̂)∑
(Xj − X̂)2

(6)
if the points {(Xi, θi)|i = 1, 2, . . . , k} were actually
known.
Since θi are unknown, the points {(Xi, θi)|i =
1, 2, . . . , k} are not available and so the least squares
coefficients cannot be computed exactly. Instead,
consider estimating the coefficients using only the
available data X1, X2, . . . , Xk.
SinceX ∼ N(θ, I) is a full-rank exponential family,
X is complete sufficient for θ. So X̄ is not only an
unbiased estimator of θ̄ but also the UMVU estimator
of θ̄.
The numerator of β̂ can be estimated by∑
(Xi − X̄)

2 − (k − 1) since E[
∑
(Xi − X̄)

2 − (k −
1)] = E[

∑
(Xi − X̄)(θi − θ̄)] =

∑
(θi − θ̄)

2. An esti-

mate of β̂ would be

∑
(Xi − X̄)

2 − (k − 1)∑
(Xj − X̄)2

= 1−
k − 1∑
(Xj − X̄)2

. (7)
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The estimate of the least square linear fit becomes

θ̂EMi = X̄ + (1−
k − 1∑
(Xj − X̄)2

)(Xi − X̄), (8)

which is just an Efron-Morris estimator. Although
the constant c = k−1 is not the optimal choice among
the Efron-Morris family, the estimator suggested by
the estimated least square linear fit nonetheless dom-
inates the näıve estimator X .

6 Linear Regression Motivates

the James-Stein Estimator

The James-Stein estimator can also be found through
a similar analysis. In the X/θ coordinate system,
consider using the regression of θ on X to get an
estimator θ̂ = E[θ|X ]. Once again the distribution of
θ givenX is unavailable. This time, restrict attention
to only estimators proportional to X, of the form

θ̂i = bXi. (9)

Minimizing the loss function L(θ, θ̂) =
∑
(θi − θ̂i)

2

is equivalent to finding the least squares fit through
the origin. The least squares estimator is

β̂ =

∑
θiXi∑
X2i
. (10)

Since E[
∑
X2i −k] = E[

∑
θiX ] =

∑
θ2i is an estimate

of the numerator of β̂, the least square fit through the
original can be estimated by

θ̂JSi = (1−
k∑
X2i
)Xi, (11)

which has the form of the James-Stein estimator with
c = k instead of the optimal c = k − 2.

7 Shrinkage Estimators Domi-

nate

The regression analysis picture provides a simple
route toward the shrinkage estimators of James-Stein

and Efron-Morris. The Galtonian perspective also
explains why the shrinkage estimators are preferred
over the näıve estimator.

The näıve estimator X corresponds to an estimate
of the regression line X̂ = E[X |θ] = θ. To predict θ
on the basis of X , however, the proper regression line
to use is θ̂ = E[θ|X ]. Shrinkage estimators are just
estimates of the proper regression line.

When k = 1, 2, the two regression lines meet at
each point (Xi, θi). In this case, the James-Stein
shrinkage estimator does not dominate the usual es-
timator. The superiority of the James-Stein estima-
tor becomes apparently only when the two regression
lines differ, for k ≥ 3.

8 Minimizing the Risk Directly

From the Galtonian viewpoint, Stein’s estimator is
just an estimate of the least squares fit to the regres-
sion of θ on X in the X/θ coordinate system. The
least squares fit minimizes the loss function, which in
turn minimizes the risk.

A similar strategy follows from minimizing the risk
directly. Among the class of estimators θ̂ = bX , the
risk is function

R(θ, bX) = Eθ[

k∑

i=1

(θi − bXi)
2] (12)

= kb2 + (1− b)2|θ|2, (13)

achieves its minimum at

b∗ =
|θ|2

k + |θ|2
(14)

to give the minimum risk

R(θ, b∗X) = k
|θ|2

k + |θ|2
< k. (15)

In actuality, θ is the unknown estimand. Since

E[
k∑

i=1

X2i ] =
k∑

i=1

(θ2i + 1) =
k∑

i=1

θ2i + k, (16)
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estimating the numerator and denominator of b∗ sep-
arately gives

b̂∗ =

∑
X2i − k∑
X2i

= 1−
k∑
X2i
. (17)

As before, the estimating the optimal b∗ leads to the
shrinking factor.

9 Empirical Bayes Approach to

the James-Stein Estimator

The empirical Bayes picture offers an alternative ex-
planation for Stein’s paradox. From the Bayesian
standpoint, consider

Xi|θi ∼ N(θi, 1) (18)

θi ∼ N(0, τ2), (19)

where each i is an independent experiment. Then the
posterior density of θi given Xi is

θi|Xi ∼ N((1−B)Xi, 1−B), where B =
1

τ2 + 1
.

(20)

Under squared-error loss, the Bayes estimator is
θ̂i = E[θi|Xi] = (1 − B)Xi. In the context of the
original problem, however, the Bayes estimator is un-
satisfactory because τ 2 is unknown. Since Xi|θi ∼
N(θi, 1), write Xi = θi+Zi, where Zi is independent
of θi and Zi ∼ N(0, 1). Then Xi ∼ N(0, τ

2+1). The
natural estimator of B = 1/(τ 2 + 1) is therefore

B̂ =
c

S2
, where S2 =

∑
X2i . (21)

Thus, the empirical Bayes argument gives

θ̂ = (1− B̂)X = (1−
c

S2
)X, (22)

which has the form of the James-Stein shrinkage es-
timator.

10 Empirical Bayes Approach

to the Efron-Morris Estima-

tor

The empirical Bayes picture also provides a route
towards the Efron-Morris estimator. From the
Bayesian standpoint, consider independent experi-
ments

Xi|θi ∼ N(θi, 1) (23)

θi ∼ N(µ, τ2), (24)

which in turn gives

θi|Xi ∼ N(µ+ (1−B)(Xi − µ), 1−B) (25)

Xi ∼ N(µ,
1

B
), where B = 1/(τ2 + 1).(26)

Using µ̂ = X̄ and B̂ = c/
∑
(Xj − X̄)

2 gives the
Efron-Morris estimator

θ̂i = X̄ + (1−
c∑

(Xj − X̄)2
)(Xi − X̄). (27)

11 Equivariance and Minimax-

ity in Simultaneous Estima-

tion

Consider X1 ∼ N(θ1, 1), with unknown estimand

θ1 ∈ <. The estimator θ̂1 = X1 is invariant under
the translation group G1 = {ga|gaX1 = X1+a}. The
class of all equivariant estimators has form X1 + b.
Under the invariant loss function L1(θ1, d1) = (θ1 −

d1)
2, θ̂1 = X1 is the minimum risk equivariance esti-

mator because the normal distribution is symmetric
about its mean.
Now generalize to X ∼ N(θ, I), where unknown
estimand θ ∈ <1 × <2 × . . . × <k has components
varying separately. Consider the translation group
G = G1 × G2 × . . . × Gk. The class of all equiv-
ariant estimators have form X + b, where constant
b ∈ <k. Under the invariant loss function L(θ, d) =∑
Li(θi, di) = |θ−d|

2, the minimum risk equivariant
estimator isX , again because the normal distribution
is symmetric about its mean.
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Now reconsider the one-dimensional estimation
problem under the minimax criterion. Under the one-
dimensional squared-error loss function L1(θ1, d1) =
(θ1 − d1)

2, the Bayes estimator corresponding to the
prior θ1 ∼ N(µ, b

2) is

θ̂1 =
X1 + µ/b

2

1 + 1/b2
, (28)

with posterior risk r1 = 1/(1 + 1/b
2). As b → ∞,

r1 → 1. Since R(θ1, X1) = Eθ1(θ1 − X1)
2 =

1 for all θ1, the usual least favorable sequence argu-
ment shows that X1 is minimax for estimating θ1.

For the multivariate estimation problem, take
multivariate prior θ N(µ, b2I). Then under the
multivariate squared-error loss function L(θ, d) =∑
Li(θi, di) = |θ − d|

2, the Bayes estimator is θ̂ =

(θ̂1, θ̂2, . . . , θ̂k), where

θ̂i =
Xi + µ/b

2

1 + 1/b2
. (29)

The posterior risk becomes r =
∑
ri = k/(1 +

1/b2). As b → ∞, r → k. Since R(θ,X) =
Eθ
∑
(θi −Xi)

2 = k for all θ, the vector X is mini-
max for θ.

The above arguments for equivariance and for min-
imaxity apply to many other simultaneous estimation
situations. Under quite general assumptions, mini-
mum risk equivariance and minimaxity both extend
by components.

12 Conclusion: Paradox of Ad-

missibility in Simultaneous

Estimation

Unlike minimum risk equivariance and minimaxity,
the admissibility of component estimators does not
extend to the admissibility of the simultaneous esti-
mator. Stein’s paradox points out clearly that the
admissibility of X1 does not imply the admissibil-
ity of the vector X . The Galtonian picture and the
Bayesian picture offer insight on why admissibility
does not extend by components.

In the Galtonian perspective, the independent
samples Xi are coupled through regression of
{(Xi, θi)} in the X/θ coordinate system. As is typi-
cal in regression analysis, the prediction of any single
point is influenced by its neighboring points.
In the Bayes perspective, the independent experi-
ments Xi|θi are coupled through the common prior
for all the θi. In estimating the common variance
of θi, all the independent samples Xi are pooled to-
gether to provide a more accurate empirical Bayes
estimate.
Minimum risk equivariance and minimaxity are
both strong optimality criteria. Minimum risk equiv-
ariance with respect to a transitive group is a con-
crete property which defines a total ordering on the
space of equivariant estimators. Minimaxity is also a
concrete property which defines a total ordering on
the space of estimators. So imposing minimum risk
equivariance or minimaxity on component estimators
is usually sufficient to guarantee that the same con-
crete property will hold over the product space.
Admissibility is not a concrete optimality criterion.
Since the risk functions of two estimators may cross,
comparison of risk functions in their entirety does
not define a total ordering on the space of estimators.
Because admissibility is a weak criterion representing
the absence of optimality, the product of admissible
estimators does not guarantee admissibility. On the
other hand, inadmissibility is a concrete optimality
criterion. So in general, the product of inadmissible
estimators will remain inadmissible.
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