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Abstract

This report offers several rationale for the Stein para-
dox. Sections 1 and 2 defines the multivariate nor-
mal mean estimation problem and introduces Stein’s
paradox. Sections 3-8 advances the Galtonian per-
spective and explains Stein’s paradox using regres-
sion analysis. Sections 9 and 10 approaches Stein’s
paradox through the conventional empirical Bayes
approach. The closing sections 11 and 12 compares
admissibility to equivariance and to minimaxity as
criteria for simultaneous estimation.

1 Estimating Mean of Multi-
variate Normal

Stein’s paradox arises in estimating the mean
of a multivariate normal random variable. Let
X1, Xo,..., X be independent normal random vari-
ables, such that X; ~ N(6;,1). All k random vari-
ables have a common known variance, but their un-
known means differ and vary separately. In other
words, (Xi1,Xa,...,Xg) ~ N(0,I), where § =
(01,02, ...,0;) and I is the k x k identity matrix.

Consider estimating the mean 6 under squared-
error loss L(6,d) = Y. (6; —di)? = |0 —d?>. A
natural and intuitive estimate of § would be X it-
self. Charles Stein showed that this naive estimator
§ = X is not even admissible. For k > 3, the obvious
estimate X is dominated by

k
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GJS = (1 - ?)X,Where 52 = ZXE (1)
i=1

The James-Stein estimator 675 shrinks the naive

estimate towards zero by a factor 1 — ks_gz, where

S$? = 3" X? depends on the other random variables.

Although the risk is optimal for kK —2, more generally,

for k> 3 and 0 < ¢ < 2(k — 2), any estimator of the
c

form
N 2)

has uniformly smaller risk for all . Similarly, for
k>4 and 0 < ¢ < 2(k — 3), the family of Efron-
Morris estimator

0/ = (1- %)X

P =X+ (- g -X), )
where
k —
§% =3 (Xi— X) 4

dominates the naive estimator X. In this case, the
optimal ¢ = k — 3. The Efron-Morris estimators
shrink towards the mean X rather than 0.

Because each X; is independently distributed, es-
timating each 6; as separate experiments would seem
intuitive. Paradoxically, combining observations ac-
tually provides a much better estimate of the means.

So Stein’s paradox states not only that the natu-
ral estimator X is not admissible, but also that X
is dominated by 675 , an estimator which combines
independent experiments.

2 Stein’s Paradox Violates In-
tuition
On the surface, Stein’s paradox seems unacceptable.

Intuitively each independent experiment should not
affect the other experiments. For example, consider



X as test scores of each student in a class. Suppose
that X; ~ N(6;,1), where 6; is the theoretical IQ of
student 1.

Given that each student takes his test indepen-
dently, the natural estimate of each student’s IQ
would be his individual test score. Since each stu-
dent took the test individually and separately, justice
dictates that each student be judged on his personal
performance. In particular, the natural estimate of
0; would intuitively be X;.

Yet according to Stein’s paradox, the performance
of the entire class should be factored into the esti-
mate of each individual’s IQ. Rather than estimate
Tom’s IQ by his personal test score, Stein’s estimator
shrinks Tom’s IQ by a factor based on the standard
deviation of all test scores. Stein’s paradox asserts
that making use of test scores of the whole class pro-
vides a better estimate of each individual’s 1Q.

3 Galtonian Perspective
Stein’s Paradox

on

Consider pairs {(X;,6;)|i = 1,2,...,k}, where the
X;’s are known but the 8;’s are unknown. Since X; ~
N(Gz,l), write Xz = 91 + Zi, where 21 ~ N(O,].)
Because X; are mutually independent, the Z; are also
mutually independent.

Francis Galton over a century ago offered a per-
spective that can shed light on Stein’s paradox. On
a graph with X as the horizontal axis and 6 as the
vertical axis, the point (X;, ;) would lie near the di-
agonal line # = X. Because of the error term Z;, the
point (X;, 0;) is horizontally shifted from the diagonal
line 8 = X by the random distance Z;.

Since EX = § and VarX = 1/k, the mean X
should be centered about §. In other words, (X, @)
should lie near the center diagonal line # = X on the
X/0 coordinate system.

4 Regression Analysis Picture

Given an X;, the corresponding 6; can be estimated
using standard regression 6 = E[f|X]. The nalve es-
timate § = X, apparently agrees with X = E[X|0] =

0, the regression line of X on . However, the regres-
sion line of X on # is not appropriate in estimating 6
on the basis of X. Instead the opposite regression line
should be used. Using the regression of § on X would
provide a more meaningful estimate of §. Since the
distribution of 8 given X is unknown, the regression
line # = E[A|X] must be approximated.

5 Linear Regression Motivates
the Efron-Morris Estimator

The optimal estimator § = E[|X] is unavailable be-
cause the distribution of 8 given X is unknown. In-
stead, restrict attention to only linear estimators of
the form

0, =a+bX;i=1,2,... k. (5)
Minimizing the loss function  L(6,0) =
Zle (0; — 0;)2 is equivalent to finding the least
squares fit to {(X;,0;)]i = 1,2,...,k} in the X/0
coordinate system. The usual least squares fit would
be

éi = §—|— B(Xz — )_(),where /8 = E (XZ — X)(GAZ — 0)
> (X, - X)?

(6)
if the points {(X;,0;)|i = 1,2,...,k} were actually
known.

Since 6; are unknown, the points {(X;,0;)|i =
1,2,...,k} are not available and so the least squares
coeflicients cannot be computed exactly. Instead,
consider estimating the coefficients using only the
available data X1, Xo, ..., Xk.

Since X ~ N (0, 1) is a full-rank exponential family,
X is complete sufficient for 6. So X is not only an
unbiased estimator of § but also the UMVU estimator
of 6.

The numerator of 3 can be estimated by
Y (X — X)? — (k—1) since E[>(X; — X)? — (k —
D] =ED(Xi—X)(0; —0)] =>_(0; — 0)2. An esti-

mate of B would be

> (Xi—X)?— (k1)
> (X, —X)?

=1 - =



The estimate of the least square linear fit becomes

k-1 .
W)(Xi—)()»

which is just an Efron-Morris estimator. Although
the constant ¢ = k—1 is not the optimal choice among
the Efron-Morris family, the estimator suggested by
the estimated least square linear fit nonetheless dom-
inates the naive estimator X.

OPM = X 4 (1— (8)

6 Linear Regression Motivates
the James-Stein Estimator

The James-Stein estimator can also be found through
a similar analysis. In the X/6 coordinate system,
consider using the regression of # on X to get an
estimator 6 = E[f|X]. Once again the distribution of
0 given X is unavailable. This time, restrict attention
to only estimators proportional to X, of the form

0; = bX;. (9)

Minimizing the loss function L(0,0) = 3 (6; — 0;)?
is equivalent to finding the least squares fit through
the origin. The least squares estimator is

R
Since E[Y_ X2—k] = E[>_ 6;X] = >_ 62 is an estimate

of the numerator of 3, the least square fit through the
original can be estimated by

(10)

k
> X7

which has the form of the James-Stein estimator with
¢ = k instead of the optimal ¢ = k — 2.

6% = (1 )X, (11)

7 Shrinkage Estimators Domi-
nate

The regression analysis picture provides a simple
route toward the shrinkage estimators of James-Stein

and Efron-Morris. The Galtonian perspective also
explains why the shrinkage estimators are preferred
over the naive estimator.

The nailve estimator X corresponds to an estimate
of the regression line X = E[X|0] = 6. To predict 0
on the basis of X, however, the proper regression line
to use is § = E[0]X]. Shrinkage estimators are just
estimates of the proper regression line.

When k£ = 1,2, the two regression lines meet at
each point (X;,6;). In this case, the James-Stein
shrinkage estimator does not dominate the usual es-
timator. The superiority of the James-Stein estima-
tor becomes apparently only when the two regression
lines differ, for k > 3.

8 Minimizing the Risk Directly

From the Galtonian viewpoint, Stein’s estimator is
just an estimate of the least squares fit to the regres-
sion of § on X in the X/0 coordinate system. The
least squares fit minimizes the loss function, which in
turn minimizes the risk.

A similar strategy follows from minimizing the risk
directly. Among the class of estimators 6 =bX , the
risk is function

k
Eo[»  (0; — bX;)?]

R(6,bX) = (12)
i=1
= kb?+(1-0)2%0)?, (13)
achieves its minimum at
2
Y=z f||a|2 (14)
to give the minimum risk
R(6,0"X) =k o < k. (15)
k+ 6|2

In actuality, € is the unknown estimand. Since

By X7 =

i i

k k
07 +1)=> 07+, (16)
=1 =1



estimating the numerator and denominator of b* sep-
arately gives

. YX2—k k

H 55 -EE D 5

As before, the estimating the optimal b* leads to the
shrinking factor.

9 Empirical Bayes Approach to
the James-Stein Estimator

The empirical Bayes picture offers an alternative ex-
planation for Stein’s paradox. From the Bayesian
standpoint, consider

where each 7 is an independent experiment. Then the
posterior density of 6; given X is

1
7241
(20)
Under squared-error loss, the Bayes estimator is
0; = E[0;|X;] = (1 — B)X;. In the context of the
original problem, however, the Bayes estimator is un-
satisfactory because 72 is unknown. Since X;|0; ~
N(0;,1), write X; = 0; 4+ Z;, where Z; is independent
of §; and Z; ~ N(0,1). Then X; ~ N(0,72+1). The
natural estimator of B = 1/(7% + 1) is therefore

0:|X; ~ N((1 - B)X;,1 — B), where B =

A c
B = =k where S? = ZXE (21)
Thus, the empirical Bayes argument gives
N N c
0:(1—B)X:(1—§)X, (22)

which has the form of the James-Stein shrinkage es-
timator.

10 Empirical Bayes Approach
to the Efron-Morris Estima-

tor

The empirical Bayes picture also provides a route
towards the Efron-Morris estimator. From the
Bayesian standpoint, consider independent experi-
ments

Xil0; ~ N(0;1) (23)
0 ~ N(u), (24)
which in turn gives
0;|X; ~ Np+1-B)(X;—p),l—DB) (25
X, ~ N(g ), where B = 1/(+2 + 1).(26)

B

Using i = X and B = ¢/ Y (X, — X)? gives the
Efron-Morris estimator

;=X +(1- -

= - Y

(27)

11 Equivariance and Minimax-

ity in Simultaneous Estima-
tion

Consider X; ~ N(61,1), with unknown estimand
01 € R. The estimator él = X3 is invariant under
the translation group G1 = {g4|9.X1 = X1+a}. The
class of all equivariant estimators has form X; + b.
Under the invariant loss function L1(61,d;) = (61 —
d1)?, 0, = X1 is the minimum risk equivariance esti-
mator because the normal distribution is symmetric
about its mean.

Now generalize to X ~ N(6,I), where unknown
estimand 0 € ®; x N2 x ... X N has components
varying separately. Consider the translation group
G = Gy X Gg X ... X Gg. The class of all equiv-
ariant estimators have form X + b, where constant
b € R*. Under the invariant loss function L(6,d) =
" Li(0;,d;) = |60 —d|?, the minimum risk equivariant
estimator is X, again because the normal distribution
is symmetric about its mean.



Now reconsider the one-dimensional estimation
problem under the minimax criterion. Under the one-
dimensional squared-error loss function L;(61,d;) =
(61 — d1)?, the Bayes estimator corresponding to the
prior 01 ~ N(u,b%) is

s Xi+p/b?
R 1/ (28)
with posterior risk r = 1/(1 + 1/b%). As b — oo,
r. — 1. Since R(Gl,Xl) = E91(01 — X1)2 =
1 for all 61, the usual least favorable sequence argu-
ment shows that X; is minimax for estimating 6.

For the multivariate estimation problem, take
multivariate prior § N(u,b*I). Then under the
multivariate squared-error loss function L(6,d) =
ST Li(6;,d;) = |6 — d|?, the Bayes estimator is 6 =
(él, ég, ey ék), where

2
), = M (29)
1+1/b2
The posterior risk becomes r = > r;, = k/(1 +
1/b%). As b — oo, 7 — k. Since R(6,X) =
Ep > (0; — X;)? = k for all , the vector X is mini-
max for 6.

The above arguments for equivariance and for min-
imaxity apply to many other simultaneous estimation
situations. Under quite general assumptions, mini-
mum risk equivariance and minimaxity both extend
by components.

12 Conclusion: Paradox of Ad-

missibility in Simultaneous
Estimation

Unlike minimum risk equivariance and minimaxity,
the admissibility of component estimators does not
extend to the admissibility of the simultaneous esti-
mator. Stein’s paradox points out clearly that the
admissibility of X; does not imply the admissibil-
ity of the vector X. The Galtonian picture and the
Bayesian picture offer insight on why admissibility
does not extend by components.

In the Galtonian perspective, the independent
samples X; are coupled through regression of
{(X;,6;)} in the X/6 coordinate system. As is typi-
cal in regression analysis, the prediction of any single
point is influenced by its neighboring points.

In the Bayes perspective, the independent experi-
ments X;|0; are coupled through the common prior
for all the ;. In estimating the common variance
of #;, all the independent samples X; are pooled to-
gether to provide a more accurate empirical Bayes
estimate.

Minimum risk equivariance and minimaxity are
both strong optimality criteria. Minimum risk equiv-
ariance with respect to a transitive group is a con-
crete property which defines a total ordering on the
space of equivariant estimators. Minimaxity is also a
concrete property which defines a total ordering on
the space of estimators. So imposing minimum risk
equivariance or minimaxity on component estimators
is usually sufficient to guarantee that the same con-
crete property will hold over the product space.

Admissibility is not a concrete optimality criterion.
Since the risk functions of two estimators may cross,
comparison of risk functions in their entirety does
not define a total ordering on the space of estimators.
Because admissibility is a weak criterion representing
the absence of optimality, the product of admissible
estimators does not guarantee admissibility. On the
other hand, inadmissibility is a concrete optimality
criterion. So in general, the product of inadmissible
estimators will remain inadmissible.
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