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Abstract. Decision trees have proved to be valuable tools for the description, classi�cation and
generalization of data. Work on constructing decision trees from data exists in multiple disciplines
such as statistics, pattern recognition, decision theory, signal processing, machine learning and
arti�cial neural networks. Researchers in these disciplines, sometimes working on quite di�erent
problems, identi�ed similar issues and heuristics for decision tree construction. This paper surveys
existing work on decision tree construction, attempting to identify the important issues involved,
directions the work has taken and the current state of the art.
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1. Introduction

Advances in data collection methods, storage and processing technology are pro-
viding a unique challenge and opportunity for automated data exploration tech-
niques. Enormous amounts of data are being collected daily from major scienti�c
projects (e.g., Human Genome Project, the Hubble Space Telescope, Geographi-
cal Information Systems), from stocks trading, from hospital information systems,
from computerized sales records and other sources. In addition, researchers and
practitioners from more diverse disciplines than ever before are attempting to use
automated methods to analyze their data. As the quantity and variety of data
available to data exploration methods increases, there is a commensurate need for
robust, e�cient and versatile data exploration methods.
Decision trees are a way to represent rules underlying data with hierarchical,

sequential structures that recursively partition the data. A decision tree can be
used for data exploration in one or more of the following ways: 1

� Description: To reduce a volume of data by transforming it into a more com-
pact form which preserves the essential characteristics and provides an accurate
summary.

� Classi�cation: Discovering whether the data contains well-separated classes of
objects, such that the classes can be interpreted meaningfully in the context of
a substantive theory.

� Generalization: Uncovering a mapping from independent to dependent variables
that is useful for predicting the value of the dependent variable in the future.

Automatic construction of rules in the form of decision trees has been attempted
virtually in all disciplines in which data exploration methods have been developed.
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It has been traditionally developed in the �elds of statistics, engineering (pattern
recognition) and decision theory (decision table programming). Recently renewed
interest has been generated by research in arti�cial intelligence (machine learning)
and the neurosciences (neural networks). Though the terminology and emphases
di�er from discipline to discipline, there are many similarities in the methodology.
Decision trees automatically constructed from data have been used successfully in

many real-world situations. Their e�ectiveness has been compared widely to other
automated data exploration methods and to human experts. Several advantages of
decision tree-based classi�cation have been pointed out.

� Knowledge acquisition from pre-classi�ed examples circumvents the bottleneck
of acquiring knowledge from a domain expert.

� Tree methods are exploratory as opposed to inferential. They are also non-
parametric. As only a few assumptions are made about the model and the data
distribution, trees can model a wide range of data distributions.

� Hierarchical decomposition implies better use of available features and compu-
tational e�ciency in classi�cation.

� As opposed to some statistical methods, tree classi�ers can treat uni-modal as
well as multi-modal data in the same fashion.

� Trees can be used with the same ease in deterministic as well as incomplete
problems. (In deterministic domains, the dependent variable can be determined
perfectly from the independent variables, whereas in incomplete problems, it
cannot be.)

� Trees perform classi�cation by a sequence of simple, easy-to-understand tests
whose semantics are intuitively clear to domain experts. The decision tree
formalism itself is intuitively appealing.

For these and other reasons, decision tree methodology can provide an important
tool in every data mining researcher/practitioner's tool box. In fact, many existing
data mining products are based on constructing decision trees from data. 2

In order to gain optimal bene�t from the existing methods, or to develop improved
algorithms, it is crucial to have an understanding of the existing work on this
subject. Some existing decision tree work lacks step-by-step progress. Researchers
and system developers often tried ad hoc variations of the basic methodology until
they found something that \worked" or was \interesting." Due to this practice,
one often encounters instances of redundant e�ort. Although it is not the intent
of the current paper to point out speci�c instances of redundant work, a careful
reader may notice several such examples. (The ad hoc nature is obviously not
true of all work on decision trees. A good counter-example is Ross Quinlan's work
over the years. It progresses in a series of carefully chosen steps that advance our
understanding of decision trees.)
In spite of a large body of existing work and substantial practical success of this

technique, there exist no comprehensive, multi-disciplinary surveys of results on
decision tree construction from data. (See Section 2 for a discussion of existing
surveys.) The current paper attempts to �ll this gap. We summarize signi�cant
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results related to automatically constructing decision trees from data, from �elds
such as pattern recognition, statistics, decision theory, machine learning, mathe-
matical programming and neural networks. We maintain the conciseness of this
survey using the following guidelines and limitations.

� We do not attempt a tutorial overview of any speci�c topics. Our main empha-
sis is to trace the directions that decision tree work has taken. For this reason,
readers with a basic knowledge of automatic decision tree construction method-
ology may bene�t more from this survey than readers who are completely new
to trees.

� We avoid repeating many of the references from three existing surveys [292,
259, 320]. This is partly because the above surveys had di�erent emphases than
ours, as outlined in Section 2.

� We limit our references to refereed journals, published books and recent confer-
ences.

� Our coverage of decision tree applications falls far short of being comprehensive;
it is merely illustrative. Same is true of our coverage of comparisons between
trees and other techniques.

1.1. Outline and survey overview

We brie
y outline and motivate below several issues involved in constructing deci-
sion trees and using them. Along with each issue, we mention the corresponding
section in the survey. This section aims to establish a structural organization for the
large body of existing literature on trees. We use below terminology from machine
learning and statistics. Alternative terminology may be found in Section 1.3.

� Greedy top-down construction is the most commonly used method for tree grow-
ing today (see Section 5.10 for exceptions). A hierarchical model can be con-
structed top-down, starting from the entire data, somehow partitioning it into
subsets, and recursing the partitioning procedure. A description of tree growing
then reduces to a description of techniques for splitting data into meaningful
subsets. Section 3 reviews dozens of \splitting rules" that have been proposed
in the literature, their classi�cation and comparitive evaluations. This section
also covers in detail multivariate splitting rules.

� Whether a model is intended for description, classi�cation or generalization, we
would like it to be \better" than the data, capturing only the true characteristics
of the data but not the noise and randomness. In the context of trees, this
concern translates into the problem of �nding the right sized trees. Techniques
to �nd right sized trees, including pruning, their evaluations and comparisons
are the topic of Section 4. When more than one tree can describe a data set
perfectly, we need metrics to quantify the \goodness" of trees. Tree quality
measures proposed in the literature are summarized in Section 5.9.
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� Sample size versus dimensionality of a data set greatly in
uences the qual-
ity of trees constructed from it. Work analysing this in
uence is reviewed in
Section 5.1. This section also covers methods that preprocess the data before in-
ducing trees, such as feature subset selection (removing redundant or correlated
features), composite feature construction and data subsampling.

� Most real-world data is complex and imperfect. Variable costs are associated
with di�erent features and classes, and missing feature values are the rule not
the exception. We review the work dealing with these two issues in Sections 5.2
and 5.3 respectively.

� The shortcomings of decision tree models, as well as solutions to alleviate them,
have been extensively reported in the literature. Greedy splitting heuristics are
e�cient and adequate for most applications, but are essentially suboptimal. In
situations where processing resources are not as important as the optimality of
the result, several ways to improving upon greedy induction exist (Section 5.4).
Crisp decisions that decision trees usually output may not be adequate or useful
in some settings. Techniques to use tree models as probability estimators have
been suggested (Section 5.5). Individual decision trees have high variance in
terms of generalization accuracy, so many authors have suggested combining
the results from multiple decision trees (Section 5.6). Trees cause data frag-
mentation, which reduces the probabilistic signi�cance of near-leaf nodes. A
solution to this is the use of soft splits (Section 5.8).

� We discuss many other miscellaneous aspects of tree construction (Section 5.10),
including incremental tree construction (Section 5.7).

� Some natural questions to ask in the context of tree construction are \is it pos-
sible to build optimal trees?", \exactly how good is a speci�c algorithm?", etc.
Researchers have theoretically and empirically analyzed the tree construction
methodology. Section 6 reviews this work in detail, covering NP-completeness
results and analyses of biases in tree induction.

� Section 7 is devoted to the practical promise of decision trees. We discuss
recent \real world" applications, available software packages and comparisons
with alternative data analysis techniques, all of which establish decision trees
as versatile and e�ective data analysis tools.

The above binning interestingly brings out a paucity of the work on decision trees.
By dividing model construction into individual subtasks, we risk losing track of the
overall purpose of this exercise. Apparent improvements in individual steps are not
guaranteed to lead to better algorithms overall. Splitting rules are a good example.
Splitting rules have to be de�ned, evaluated and improved in the broader context of
the tree construction method. Otherwise, they are reduced to mere ad hoc greedy
heuristics. It is not surprising that most existing splitting rules are functionally
equivalent.

The author acknowledges a shortcoming of this organization. Papers dealing with
more than one topic are either listed multiple times or their mention is omitted from
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some places. A good example is [44] which has relevance to many of the issues we
address, and is referenced repeatedly under Sections 5.4,5.5,5.6 and 5.10.
The next section (1.2) introduces brie
y the basic concepts involved in decision

tree construction. Section 1.3 discusses alternative terminology. Section 2 sum-
marizes high level pointers, mentioning existing surveys, text books and historical
origins. Sections 3, 4, 5, 6 and 7 together comprise the survey whose organiza-
tion is described in detail above. Section 8 concludes the paper with some general
comments.

1.2. Basics of decision trees

Readers completely unfamiliar with decision trees should refer to [320], Section II
for a good summary of basic de�nitions. A decision tree is constructed from a
training set, which consists of objects. Each object is completely described by a set
of attributes and a class label. Attributes can have ordered (e.g., real) or unordered
(e.g., Boolean) values. The concept underlying a data set is the true mapping
between the attributes and the class. A noise-free training set is one in which all
the objects are \generated" using the underlying concept.
A decision tree contains zero or more internal nodes and one or more leaf nodes.

All internal nodes have two or more child nodes. 3 All internal nodes contain splits,
which test the value of an expression of the attributes. Arcs from an internal node
t to its children are labeled with distinct outcomes of the test at t. Each leaf node
has a class label associated with it. 4

The task of constructing a tree from the training set has been called tree induction,
tree building and tree growing. Most existing tree induction systems proceed in a
greedy top-down fashion. (Section 5.10 lists exceptions). Starting with an empty
tree and the entire training set, some variant of the following algorithm is applied
until no more splits are possible.

1. If all the training examples at the current node t belong to category c, create a
leaf node with the class c.

2. Otherwise, score each one of the set of possible splits S, using a goodness mea-

sure.

3. Choose the best split s� as the test at the current node.

4. Create as many child nodes as there are distinct outcomes of s�. Label edges
between the parent and child nodes with outcomes of s�, and partition the
training data using s� into the child nodes.

5. A child node t is said to be pure if all the training samples at t belong to the
same class. Repeat the previous steps on all impure child nodes.

Discrimination is the process of deriving classi�cation rules from samples of classi-
�ed objects, and classi�cation is applying the rules to new objects of unknown class
[138] 5. Decision trees have been used for discrimination as well as classi�cation.
An object X is classi�ed by passing it through the tree starting at the root node.

The test at each internal node along the path is applied to the attributes of X, to
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determine the next arc along which X should go down. The label at the leaf node
at which X ends up is output as its classi�cation. An object is misclassi�ed by a
tree if the classi�cation output by the tree is not the same as the object's correct
class label. The proportion of objects correctly classi�ed by a decision tree is known
as its accuracy, whereas the proportion of misclassi�ed objects is the error.

1.3. Terminology

Structures similar to decision trees have been called classi�cation trees, branched
testing sequences, discriminant trees and identi�cation keys. Training sets consist
of objects, also known as samples, observations, examples or instances. Attributes
have been referred to as features, predictors or independent variables. In an ordered
attribute space, a decision tree imposes a partitioning that can be geometrically
represented as a collection of hyper-surfaces and regions. Much of the work on
decision trees uses only a speci�c type of surface, namely hyper-planes. (For ex-
ceptions, see the Neural Trees and Other Methods paragraphs in Section 3.2.) For
this reason, splits are often referred to as hyper-planes, attributes as dimensions
and objects as points.
Category or dependent variable is the same as class label. Ordered domains are

equivalent to or comprise continuous, integer, real-valued and monotonous domains.
Unordered domains have categorical, discrete or free variables. Internal nodes are
the same as non-terminals or test nodes. Leaf nodes are referred to as the terminal
nodes or decision nodes. Goodness measures are also known as feature evaluation
criteria, feature selection criteria, impurity measures or splitting rules.

2. High level pointers

A decision tree performs multistage hierarchical decision making. For a general
rationale for multistage classi�cation schemes and a categorization of such schemes,
see [174].

2.1. Origins

Work on decision tree induction in statistics began due to the need for exploring
survey data [103]. Statistical programs such as AID [346], MAID [124], THAID
[260] and CHAID [176] built binary segmentation trees aimed towards unearthing
the interactions between predictor and dependent variables.
Pattern recognition work on decision trees was motivated by the need to interpret

images from remote sensing satellites such as LANDSAT in the 1970s [350].
Decision trees in particular, and induction methods in general, arose in machine

learning to avoid the knowledge acquisition bottleneck [101] for expert systems.
In sequential fault diagnosis, the inputs are a set of possible tests with associated

costs and a set of system states with associated prior probabilities. One of the
states is a \fault-free" state and the other states represent distinct faults. The aim
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is to build a test algorithm that unambiguously identi�es the occurrence of any
system state using the given tests, while minimizing the total cost. The testing
algorithms normally take the form of decision trees or AND/OR trees [368, 291].
Many heuristics used to construct decision trees are used for test sequencing also.

2.2. Treatises and surveys

An overview of work on decision trees in the pattern recognition literature can be
found in [76]. A high level comparative perspective on the classi�cation literature
in pattern recognition and arti�cial intelligence can be found in [53]. Tree induction
from a statistical perspective, as it is popularly used today, is reviewed in Breiman
et al.'s excellent book Classi�cation and Regression Trees [31]. For a review of
earlier statistical work on hierarchical classi�cation, see [103]. A majority of work
on decision trees in machine learning is an o�shoot of Breiman et al.'s work and
Quinlan's ID3 algorithm [301]. Quinlan's book on C4.5 [306], although speci�c to
his tree building program, provides an outline of tree induction methodology from
a machine learning perspective.
Payne and Preece [292] surveyed results on constructing taxonomic identi�cation

keys, in a paper that attempted \a synthesis of a large and widely-dispersed litera-
ture" from �elds such as biology, pattern recognition, decision table programming,
machine fault location, coding theory and questionnaire design. Taxonomic identi-
�cation keys are tree structures that have one object per leaf and for which the set
of available tests (splits) is pre-speci�ed. The problem of constructing identi�cation
keys is not the same as the problem of constructing decision trees from data, but
many common concerns exist, such as optimal key construction and choosing good
tests at tree nodes.
Moret [259] provided a tutorial overview of the work on representing Boolean

functions as decision trees and diagrams. He summarized results on constructing
decision trees in discrete variable domains. Although Moret mentions some pattern
recognition work on constructing decision trees from data, this was not his primary
emphasis.
Safavin and Landgrebe [320] surveyed the literature on decision tree classi�ers,

almost entirely from a pattern recognition perspective. This survey had the aim of
bringing the disparate issues in decision tree classi�ers together, providing a more
uni�ed view, and cautioning the \casual" users about the pitfalls of each method.
The current paper di�ers from the above surveys in the following ways.

� A substantial body of work that has been done after the existing surveys were
written (e.g., almost all the machine learning work on tree construction) is
covered. Some topics that were not discussed in the existing surveys (e.g.,
multivariate trees, NP-completeness) are covered.

� This paper brings into a common organization decision tree work in multiple
disciplines.

� Our main emphasis is on automatically constructing decision trees for parsimo-
nious descriptions of, and generalization from, data. (In contrast, for example,
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the main emphasis of [259] was on representing Boolean functions as decision
trees.)

2.3. What is not covered

In recent years, there has been a growing amount of work in Computational Learn-
ing Theory (COLT), on matters related to decision tree induction. We cover very
little of this work in the survey, primarily due to the author's ignorance. Proceed-
ings of the annual COLT conferences and International Conferences on Machine
Learning (ICML) are good starting points to explore this work. A few good pa-
pers, to get a 
avor for this work, are [169, 285, 177, 178, 148].

Work on learning Bayesian or inference networks from data is closely related to
automatic decision tree construction. There are an increasing number of papers
on the former topic, although the similarities with tree induction are usually not
pointed out. For a good discussion of decision tree induction from a Bayesian
networks point of view, see [42]. For a good introduction to the literature on
learning Bayesian networks, see [45].

Work on automatic construction of hierarchical structures from data in which
the dependent variable is unknown (unsupervised learning), present in �elds such
as cluster analysis [93], machine learning (e.g., [105, 121]) and vector quantization
[122] is not covered. Work on hand-constructed decision trees (common in medicine)
is also not considered. We do not discuss regression trees. There is a rich body of
literature on this topic which shares many issues with the decision tree literature.
For an introduction, see [31, 55]. We do not discuss binary decision diagrams and
decision graphs [188]. We do not discuss patents. 6

3. Finding splits

To build a decision tree, it is necessary to �nd at each internal node a test for
splitting the data into subsets. In case of univariate trees, �nding a split amounts
to �nding the attribute that is the most \useful" in discriminating the input data,
and �nding a decision rule using the attribute. In case of multivariate trees, �nding
a split can be seen as �nding a \composite" feature, a combination of existing
attributes that has good discriminatory power. In either case, a basic task in tree
building is to rank features (single or composite) according to their usefulness in
discriminating the classes in the data.

3.1. Feature evaluation rules

In pattern recognition and statistics literature, features are typically ranked using
feature evaluation rules, and the single best feature or a good feature subset are
chosen from the ranked list. In machine learning, however, feature evaluation rules
are used mainly for picking the single best feature at every node of the decision tree.



DECISION TREE CONSTRUCTION: SURVEY 9

Methods used for selecting a good subset of features are typically quite di�erent.
We will postpone the discussion of feature subset selection methods to Section 5.1.1.

Ben Bassat [19] divides feature evaluation rules into three categories: rules de-
rived from information theory, rules derived from distance measures and rules de-
rived from dependence measures. These categories are sometimes arbitrary and
not distinct. Some measures belonging to di�erent categories can be shown to be
equivalent. Many can be shown to be approximations of each other.

Rules derived from information theory: Examples of this variety are rules based on
Shannon's entropy. 7 Tree construction by maximizing global mutual information,
i.e., by expanding tree nodes that contribute to the largest gain in average mutual
information of the whole tree, is explored in pattern recognition [126, 333, 351]. 8

Tree construction by locally optimizing information gain, the reduction in entropy
due to splitting each individual node, is explored in pattern recognition [142, 372,
49, 139], in sequential fault diagnosis [368] and in machine learning [301]. Mingers
[246] suggested the G-statistic, an information theoretic measure that is a close
approximation to �2 distribution, for tree construction as well as for deciding when
to stop. De Merckt [367] suggested an attribute selection measure that combined
geometric distance with information gain, and argued that such measures are more
appropriate for numeric attribute spaces.

Rules derived from distance measures: \Distance" here refers to the distance be-
tween class probability distributions. The feature evaluation criteria in this class
measure separability, divergence or discrimination between classes. A popular dis-
tance measure is the Gini index of diversity 9, which has been used for tree con-
struction in statistics [31], pattern recognition [119] and sequential fault diagnosis
[291]. Breiman et al. pointed out that the Gini index has di�culty when there are
a relatively large number of classes, and suggested the twoing rule [31] as a remedy.
Taylor and Silverman [355] pointed out that the Gini index emphasizes equal sized
o�spring and purity of both children. They suggested a splitting criterion, called
mean posterior improvement (MPI), that emphasizes exclusivity between o�spring
class subsets instead.

Bhattacharya distance [218], Kolmogorov-Smirno� distance [113, 316, 143] and
the �2 statistic [17, 141, 246, 389, 380] are some other distance-based measures
that have been used for tree induction. Though the Kolmogorov-Smirno� distance
was originally proposed for tree induction in two-class problems [113, 316], it was
subsequently extended to multiclass domains [143]. Class separation-based metrics
developed in the machine learning literature [98, 388] are also distance measures.
A relatively simplistic method for estimating class separation, which assumes that
the values of each feature follow a Gaussian distribution in each class, was used for
tree construction in [227].

Rules derived from dependence measures: These measure the statistical depen-
dence between two random variables. All dependence-based measures can be inter-
preted as belonging to one of the above two categories [19].

There exist many attribute selection criteria that do not clearly belong to any
category in Ben Bassat's taxonomy. Gleser and Collen [126] and Talmon [351] used
a combination of mutual information and �2 measures. They �rst measured the
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gain in average mutual information I(Ti) due to a new split Ti, and then quanti�ed
the probability P (I(Ti)) that this gain is due to chance, using �2 tables. The split
that minimized P (I(Ti)) was chosen by these methods. A permutation statistic
was used for univariate tree construction for 2-class problems in [214]. The main
advantage of this statistic is that, unlike most of the other measures, its distribution
is independent of the number of training instances. As will be seen in Section 4,
this property provides a natural measure of when to stop tree growth.
Measures that use the activity of an attribute have been explored for tree con-

struction [258, 252]. The activity of a variable is equal to the testing cost of the
variable times the a priori probability that it will be tested. The computational re-
quirements for computing activity are the same as those for the information-based
measures. Quinlan and Rivest [309] suggested the use of Risannen's minimum de-
scription length [314] for deciding which splits to prefer over others and also for
pruning. Kalkanis [172] pointed out that measures like information gain and Gini
index are all concave (i.e., they never report a worse goodness value after trying a
split than before splitting), so there is no natural way of assessing where to stop
further expansion of a node. As a remedy, Kalkanis suggested the use of the upper
bounds in the con�dence intervals for the misclassi�cation error as an attribute
selection criterion. 10

The total number of misclassi�ed points has been explored as a selection criterion
by many authors. Two examples are Heath's sum minority [147] and Lubinsky's
inaccuracy [223, 224]. The CART book [31], among others, discuss why this is not a
good measure for tree induction. Additional tricks are needed to make this measure
useful [223, 269]. Heath [147] also used max minority (maximum of the number of
misclassi�ed points on two sides of a binary split) and sum of impurities (which
assigns an integer to each class and measures the variance between class numbers
in each partition) [147, 269]. An almost identical measure to sum of impurities was
used earlier in the Automatic Interaction Detection (AID) program [103].
Most of the above feature evaluation criteria assume no knowledge of the probabil-

ity distribution of the training objects. The optimal decision rule at each tree node,
a rule that minimizes the overall error probability, is considered in [204, 205, 206]
assuming that complete probabilistic information about the data is known. Shang
and Breiman [335] argue that trees built from probability distributions (which in
turn are inferred from attribute values) are more accurate than trees built directly
from attribute values. Grewe and Kak [133] proposed a method for building multi-
attribute hash tables using decision trees for object localization and detection in
3D. Their decision trees are also built from probability distributions of attributes
rather than the attribute values themselves. Pal et al. [286] recently proposed a
variant of the ID3 algorithm for real data, in which tests at an internal node are
found using genetic algorithms.

3.1.1. Evaluations, Comparisons Given the large number of feature evaluation
rules, a natural concern is to measure their relative e�ectiveness for constructing
\good" trees. Evaluations in this direction, in statistics, pattern recognition and
machine learning, have been predominantly empirical in nature, though there have
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been a few theoretical evaluations. (We defer the discussion of the latter to Sec-
tion 6.)

In spite of a large number of comparative studies, very few so far have concluded
that a particular feature evaluation rule is signi�cantly better than others. A ma-
jority of studies have concluded that there is not much di�erence between di�erent
measures. This is to be expected as induction per se can not rigorously justify
performance on unseen instances. 11 A lot of splitting rules are similar from a func-
tional perspective. Splitting rules are essentially ad hoc heuristics for evaluating
the strength of dependence between attributes and the class. Comparisons of in-
dividual methods may still be interesting if they enlighten the reader about which
metric should be used in what situations.

Baker and Jain [15] reported experiments comparing eleven feature evaluation
criteria and concluded that the feature rankings induced by various rules are very
similar. Several feature evaluation criteria, including Shannon's entropy and di-
vergence measures, are compared using simulated data in [18], on a sequential,
multi-class classi�cation problem. The conclusions are that no feature selection
rule is consistently superior to the others, and that no speci�c strategy for alter-
nating di�erent rules seems to be signi�cantly more e�ective. Breiman et al. [31]
conjectured that decision tree design is rather insensitive to any one from a large
class of splitting rules, and it is the stopping rule that is crucial. Mingers [248] com-
pared several attribute selection criteria, and concluded that tree quality doesn't
seem to depend on the speci�c criterion used. He even claimed that random at-
tribute selection criteria are as good as measures like information gain [301]. This
later claimwas refuted in [41, 219], where the authors argued that random attribute
selection criteria are prone to over�tting, and also fail when there are several noisy
attributes.

Miyakawa [252] compared three activity-based measures, Q, O and loss, both
analytically and empirically. He showed that Q and O do not chose non-essential
variables at tree nodes, and that they produce trees that are 1/4th the size of the
trees produced by loss. Fayyad and Irani [98] showed that their measure C-SEP,
performs better than Gini index [31] and information gain [301] for speci�c types
of problems.

Several researchers [141, 301] pointed out that information gain is biased towards
attributes with a large number of possible values. Mingers [246] compared informa-
tion gain and the �2 statistic for growing the tree as well as for stop-splitting. He
concluded that �2 corrected information gain's bias towards multivalued attributes,
however to such an extent that they were never chosen, and the latter produced
trees that were extremely deep and hard to interpret. Quinlan [306] suggested gain

ratio as a remedy for the bias of information gain. Mantaras [233] argued that gain
ratio had its own set of problems, and suggested using information theory-based
distance between partitions for tree construction. He formally proved that his mea-
sure is not biased towards multiple-valued attributes. However, White and Liu
[380] present experiments to conclude that information gain, gain ratio and Man-
taras' measure are worse than a �2 based statistical measure, in terms of their bias
towards multiple-valued attributes. A hyper-geometric function is proposed as a
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means to avoid the biases of information gain, gain ratio and �2 metrics by Martin
[235]. Martin proposed and examined several alternatives in Quinlan's measures
(including distance, orthogonality, a Beta function and two chi-squared tests). In
a di�erent paper [236], Martin proved that the time complexity of induction and
post-processing is exponential in tree height in the worst case and, under fairly
general conditions, in the average case. This puts a premium on designs which
tend to produce shallower trees (e.g., multi-way rather than binary splits and selec-
tion criteria which prefer more balanced splits). Kononenko [193] pointed out that
Minimum Description Length-based feature evaluation criteria have the least bias
towards multi-valued attributes.

3.2. Multivariate splits

Decision trees have been popularly univariate, i.e., they use splits based on a single
attribute at each internal node. Even though several methods have been developed
in the literature for constructing multivariate trees, this body of work is not as
well-known.

Most of the work on multivariate splits considers linear (oblique) trees. These
are trees which have tests based on a linear combination of the attributes at some
internal nodes. The problem of �nding an optimal linear split (optimal with re-
spect to any of the feature evaluation measures in Section 3.1) is more di�cult than
that of �nding the optimal univariate split. In fact, �nding optimal linear splits
is known to be intractable for some feature evaluation rules (see Section 6.1), so
heuristic methods are required for �nding good, albeit suboptimal, linear splits.
Methods used in the literature for �nding good linear tests include linear discrim-
inant analysis, hill climbing search, linear programming, perceptron training and
others.
Linear Discriminant Trees: Several authors have considered the problem of
constructing tree-structured classi�ers that have linear discriminants [85] at each
node. You and Fu [386] used a linear discriminant at each node in the decision tree,
computing the hyper-plane coe�cients using the Fletcher-Powell descent method
[107]. Their method requires that the best set of features at each node be pre-
speci�ed by a human. Friedman [113] reported that applying Fisher's linear dis-
criminants, instead of atomic features, at some internal nodes was useful in building
better trees. Qing-Yun and Fu [298] also describe a method to build linear discrim-
inant trees. Their method uses multivariate stepwise regression to optimize the
structure of the decision tree as well as to choose subsets of features to be used in
the linear discriminants. More recently, use of linear discriminants at each node is
considered by Loh and Vanichsetakul [220]. Unlike in [386], the variables at each
stage are appropriately chosen in [220] according to the data and the type of splits
desired. Other features of the tree building algorithm in [220] are: (1) it yields
trees with univariate, linear combination or linear combination of polar coordinate
splits, and (2) allows both ordered and unordered variables in the same linear split.
Use of linear discriminants in a decision tree is considered in the remote sensing
literature in [158]. A method for building linear discriminant classi�cation trees, in



DECISION TREE CONSTRUCTION: SURVEY 13

which the user can decide at each node what classes need to be split, is described
in [357]. John [167] recently considered linear discriminant trees in the machine
learning literature. An extension of linear discriminants are linear machines [276],
which are linear structures that can discriminate between multiple classes. In the
machine learning literature, Utgo� et al. explored decision trees that used linear
machines at internal nodes [35, 83].

Locally Opposed Clusters of Objects: Sklansky and his students developed
several piecewise linear discriminants based on the principle of locally opposed
clusters of objects. Wassel and Sklansky [374, 344] suggested a procedure to train
a linear split to minimize the error probability. Using this procedure, Sklansky
and Michelotti [343] developed a system to induce a piece-wise linear classi�er.
Their method identi�es the closest-opposed pairs of clusters in the data, and trains
each linear discriminant locally. The �nal classi�er produced by this method is a
piecewise linear decision surface, not a tree. Foroutan [110] discovered that the re-
substitution error rate of optimized piece-wise linear classi�ers is nearly monotonic
with respect to the number of features. Based on this result, Foroutan and Sklan-
sky [111] suggest an e�ective feature selection procedure for linear splits that uses
zero-one integer programming. Park and Sklansky [290, 289] describe methods to
induce linear tree classi�ers and piece-wise linear discriminants. The main idea in
these methods is to �nd hyper-planes that cut a maximal number of Tomek links.
Tomek links of a data set connect opposed pairs of data points for which the circle
of in
uence between the points doesn't contain any other points.

Hill ClimbingMethods: CART's use of linear combinations of attributes ([31],
Chapter 5) is well-known. This algorithm uses heuristic hill climbing and back-
ward feature elimination to �nd good linear combinations at each node. Murthy
et al. [268, 269] described signi�cant extensions to CART's linear combinations
algorithm, using randomized techniques.

Perceptron Learning: A perceptron is a linear function neuron [249, 137] which
can be trained to optimize the sum of distances of the misclassi�ed objects to it,
using a convergent procedure for adjusting its coe�cients. Perceptron trees, which
are decision trees with perceptrons just above the leaf nodes, were discussed in [362].
Decision trees with perceptrons at all internal nodes were described in [365, 334].

Mathematical Programming: Linear programming has been used for building
adaptive classi�ers since late 1960s [156]. Given two possibly intersecting sets of
points, Duda and Hart [85] proposed a linear programming formulation for �nding
the split whose distance from the misclassi�ed points is minimized. More recently,
Mangasarian and Bennett used linear and quadratic programming techniques to
build machine learning systems in general and decision trees in particular [232, 22,
20, 230, 21]. Use of zero-one integer programming for designing vector quantizers
can be found in [217]. Brown and Pittard [37] also employed linear programming
for �nding optimal multivariate splits at classi�cation tree nodes. Almost all the
above papers attempt to minimize the distance of the misclassi�ed points from the
decision boundary. In that sense, these methods are more similar to perceptron
training methods [249], than to decision tree splitting criteria. Mangasarian [231]
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described a linear programming formulation to minimize the number of misclassi�ed
points instead of the geometric distance.
Neural Trees: In the neural networks community, many researchers have con-
sidered hybrid structures between decision trees and neural nets. Though these
techniques were developed as neural networks whose structure could be automat-
ically determined, their outcome can be interpreted as decision trees with non-
linear splits. Techniques very similar to those used in tree construction, such as
information theoretic splitting criteria and pruning, can be found in neural tree
construction also. Examples of this work include [127, 342, 32, 59, 150, 324, 72].
Sethi [331] described a method for converting a univariate decision tree into a neural
net and then retraining it, resulting in tree structured entropy nets with sigmoidal
splits. An extension of entropy nets, that converts linear decision trees into neural
nets was described in [288]. Decision trees with small multi-layer networks at each
node, implementing nonlinear, multivariate splits, were described in [134]. Jordan
and Jacobs [170] described hierarchical parametric classi�ers with small \experts"
at internal nodes. Training methods for tree structured Boltzmann machines are
described in [325].
Other Methods: Use of polynomial splits at tree nodes is explored in decision
theory [330]. In Machine Learning, recently a method has been suggested [165] for
\manufacturing" second or higher degree features and then inducing linear splits
on these complex features to get non-linear decision trees. In information theory,
Gelfand and Ravishanker [118] describe a method to build a tree structured �lter
that has linear processing elements at internal nodes. Heath et al. [147, 145]
used simulated annealing to �nd the best oblique split at each tree node. Chai
et al. [52] recently suggested using genetic algorithms to search for linear splits at
non-terminal nodes in a tree. Lubinsky [225, 224] attempted bivariate trees, trees
in which some functions of two variables can be used as tests at internal nodes.
Lubinsky considered the use of linear cuts, corner cuts and rectangular cuts, using
ordered and unordered variables.

3.3. Ordered vs. unordered attributes

The �elds of pattern recognition and statistics historically have considered ordered
or numeric attributes as the default. This seems natural considering application
domains such as spectral analysis and remote sensing [350]. In these �elds, special
techniques [332] were developed to accommodate discrete attributes into what were
primarily algorithms for ordered attributes. Fast methods for splitting multiple
valued categorical variables are described in [57].
In machine learning, a sub�eld of Arti�cial Intelligence, which in turn has been

dominated by symbolic processing, many tree induction methods (e.g., [299] were
originally developed for categorical attributes. The problem of incorporating con-
tinuous attributes into these algorithms is considered subsequently. The problem of
meaningfully discretizing a continuous dimension is considered in [99, 181, 367, 263].
Fast methods for splitting a continuous dimension into more than two ranges is con-
sidered in the machine learning literature [100, 115]. 12 An extension to ID3 [301]
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that distinguishes between attributes with unordered domains and attributes with
linearly ordered domains is suggested in [60]. Quinlan [308] recently discussed im-
proved ways of using continuous attributes with C4.5.

4. Obtaining the right sized trees

See Breslow and Aha's recent survey [33] on simplifying decision trees for a detailed
account of the motivation for tree simpli�cation and existing solution approaches.
One of the main di�culties of inducing a recursive partitioning structure is know-

ing when to stop. Obtaining the \right" sized trees is important for several reasons,
which depend on the size of the classi�cation problem [119]. For moderate sized
problems, the critical issues are generalization accuracy, honest error rate estima-
tion and gaining insight into the predictive and generalization structure of the data.
For very large tree classi�ers, the critical issue is optimizing structural properties
such as height and balance [372, 50].
Breiman et al. [31] pointed out that tree quality depends more on good stopping

rules than on splitting rules. E�ects of noise on generalization are discussed in [275,
186]. Over�tting avoidance as a speci�c bias is studied in [383, 326]. E�ect of noise
on classi�cation tree construction methods is studied in the pattern recognition
literature in [353].
Several techniques have been suggested for obtaining the right sized trees. The

most popular of these is pruning, whose discussion we will defer to Section 4.1. The
following are some alternatives to pruning that have been attempted.

� Restrictions on minimum node size: A node is not split if it has smaller than k
objects, where k is a parameter to the tree induction algorithm. This strategy,
which is known to be not robust, is used in some early methods [113].

� Two stage search: In this variant, tree induction is divided into two subtasks:
�rst, a good structure for the tree is determined; then splits are found at all
the nodes. 13 The optimization method in the �rst stage may or may not be
related to that used in the second stage. Lin and Fu [218] use K-means cluster-
ing for both stages, whereas Qing-Yun and Fu [298] use multi-variate stepwise
regression for the �rst stage and linear discriminant analysis for the second
stage.

� Thresholds on Impurity: In this method, a threshold is imposed on the value
of the splitting criterion, such that if the splitting criterion falls below (above)
the threshold, tree growth is aborted. Thresholds can be imposed on local (i.e.,
individual node) goodness measures or on global (i.e., entire tree) goodness.
The former alternative is used in [126, 316, 300, 235] and the latter in [333].
A problem with the former method is that the value of most splitting criteria
(Section 3.1) varies with the size of the training sample. Imposing a single
threshold that is meaningful at all nodes in the tree is not easy and may not
even be possible. Some feature evaluation rules, whose distribution does not

depend on the number of training samples (i.e., a goodness value of k would
have the same signi�cance anywhere in the tree) have been suggested in the
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literature [214, 389, 172]. Martin and Hirschberg [236] argue that pre-pruning
or simple pruning is linear in tree height, contrasted to the exponential growth
of more complex operations. The key factor that in
uences whether simple
pruning will su�ce is whether the split selection and pruning heuristics are the
same and unbiased.

� Trees to rules conversion: Quinlan [302, 306] gave e�cient procedures for con-
verting a decision tree into a set of production rules. Simple heuristics to
generalize and combine the rules generated from trees can act as a substitute
for pruning for Quinlan's univariate trees.

� Tree reduction: Cockett and Herrera [61] suggested a method to reduce an ar-
bitrary binary decision tree to an \irreducible" form, using discrete decision
theory principles. Every irreducible tree is optimal with respect to some ex-
pected testing cost criterion, and the tree reduction algorithm has the same
worst-case complexity as most greedy tree induction methods.

4.1. Pruning

Pruning, the method most widely used for obtaining right sized trees, was proposed
by Breiman et al. ( [31], Chapter 3). They suggested the following procedure: build
the complete tree (a tree in which splitting no leaf node further will improve the
accuracy on the training data) and then remove subtrees that are not contributing
signi�cantly towards generalization accuracy. It is argued that this method is better
than stop-splitting rules, because it can compensate, to some extent, for the sub-
optimality of greedy tree induction. For instance, if there is very good node T2 a
few levels below a not-so-good node T1, a stop-splitting rule will stop tree growth
at T1, whereas pruning may give a high rating for, and retain, the whole subtree
at T1. Kim and Koehler [183] analytically investigate the conditions under which
pruning is bene�cial for accuracy. Their main result states that pruning is more
bene�cial with increasing skewness in class distribution and/or increasing sample
size.

Breiman et al.'s pruning method [31] cost complexity pruning (a.k.a. weakest link
pruning or error complexity pruning) proceeds in two stages. In the �rst stage, a
sequence of increasingly smaller trees are built on the training data. In the second
stage, one of these trees is chosen as the pruned tree, based on its classi�cation
accuracy on a pruning set. Pruning set is a portion of the training data that is set
aside exclusively for pruning alone. Use of a separate pruning set is a fairly common
practice. Another pruning method that needs a separate data set is Quinlan's [302]
reduced error pruning. This method, unlike cost complexity pruning, does not build
a sequence of trees and hence is claimed to be faster.

The requirement for an independent pruning set might be problematic especially
when small training samples are involved. Several solutions have been suggested to
get around this problem. Breiman et al. [31] describe a cross validation procedure
that avoids reserving part of training data for pruning, but has a large computa-
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tional complexity. Quinlan's pessimistic pruning [302, 306] does away with the need
for a separate pruning set by using a statistical correlation test.
Crawford [69] analyzed Breiman et al.'s cross validation procedure, and pointed

out that it has a large variance, especially for small training samples. He suggested
a .632 bootstrap method 14 as an e�ective alternative. Gelfand et al. [119] claimed
that the cross validation method is both ine�cient and possibly ine�ective in �nd-
ing the optimally pruned tree. They suggested an e�cient iterative tree growing
and pruning algorithm that is guaranteed to converge. This algorithm divides the
training sample into two halves and iteratively grows the tree using one half and
prunes using the other half, exchanging the roles of the halves in each iteration.

Quinlan and Rivest [309] used minimum description length [314] for tree con-
struction as well as for pruning. An error in their coding method (which did not
have an e�ect on their main conclusions) was pointed out in [371]. Another pruning
method that is based on viewing the decision tree as an encoding for the training
data was suggested by Forsyth et al. [112]. Use of dynamic programming to prune
trees optimally and e�ciently has been explored in [25].
A few studies have been done to study the relative e�ectiveness of pruning meth-

ods [247, 62, 91]. Just as in the case of splitting criteria, no single ad hoc pruning
method has been adjudged to be superior to the others. The choice of a pruning
method depends on factors such as the size of the training set and availability of
additional data for pruning.

5. Other issues

Tree construction involves many issues other than �nding good splits and knowing
when to stop recursive splitting. This section bundles together several such issues.

5.1. Sample size versus dimensionality

The relationship between the size of the training set and the dimensionality of the
problem is studied extensively in the pattern recognition literature [153, 175, 108,
54, 173, 202, 166, 114]. Researchers considered the problem of how sample size
should vary according to dimensionality and vice versa. Intuitively, an imbalance
between the number of samples and the number of features (i.e., too many samples
with too few attributes, or too few samples with too many attributes) can make in-
duction more di�cult. Some conclusions from the above papers can be summarized,
informally, as follows:

� For a �nite sized data with little or no a priori information, the ratio of the sam-
ple size to dimensionalitymust be as large as possible to suppress optimistically
biased evaluations of the performance of the classi�er.

� For a given sample size used in training a classi�er, there exists an optimum
feature size and quantization complexity. (Optimality here is in terms of tree
size, not predictive accuracy. Quantization complexity refers to the number of
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ranges a dimension is split into.) This result is true for both two-class problems
and multi-class problems. 15

� The ratio of the sample size to dimensionality should vary inversely proportional
to the amount of available knowledge about the class conditional densities.

In tasks where more features than the \optimal" are available, decision tree qual-
ity is known to be a�ected by the redundant and irrelevant attributes [10, 323].
To avoid this problem, either a feature subset selection method (Section 5.1.1) or
a method to form a small set of composite features (Section 5.1.2) can be used as
a preprocessing step to tree induction. An orthogonal step to feature selection is
instance selection. If the training sample is too large to allow for e�cient classi�er
induction, a subsample selection method (Section 5.1.3) can be employed.

5.1.1. Feature subset selection There is a large body of work on choosing relevant
subsets of features (see the texts [84, 27, 245]). Much of this work was not developed
in the context of tree induction, but a lot of it has direct applicability. There are
two components to any method that attempts to choose the best subset of features.
The �rst is a metric using which two feature subsets can be compared to determine
which is better. Feature subsets have been compared in the literature using direct
error estimation [111, 168] or using any of the feature evaluation criteria discussed in
Section 3.1 (e.g. Bhattacharya distance was used for comparing subsets of features
in [272]). Direct error estimation is similar to the wrapper approach [191], which
advocates that the induction algorithm be used as a \black box" by the feature
subset selection method.
The second component of feature subset selection methods is a search algorithm

through the space of possible feature subsets. Most existing search procedures are
heuristic in nature, as exhaustive search for the best feature subset is typically pro-
hibitively expensive. (An exception is the optimal feature subset selection method
using zero-one integer programming, suggested by Ichino and Sklansky [157].) A
heuristic commonly used is the greedy heuristic. In stepwise forward selection, we
start with an empty feature set, and add, at each stage, the best feature according
to some criterion. In stepwise backward elimination, we start with the full feature
set and remove, at each step, the worst feature. When more than one feature is
greedily added or removed, beam search is said to have been performed [341, 48]. A
combination of forward selection and backward elimination, a bidirectional search,
was attempted in [341].
Comparisons of heuristic feature subset selection methods resound the conclu-

sions of studies comparing feature evaluation criteria and studies comparing prun-
ing methods | no feature subset selection heuristic is far superior to the others.
[64, 366] showed that heuristic sequential feature selection methods can do arbi-
trarily worse than the optimal strategy. Mucciardi and Gose [262] compared seven
feature subset selection techniques empirically and concluded that no technique
was uniformly superior to the others. There has been a recent surge of interest
in feature subset selection methods in the machine learning community, resulting
in several empirical evaluations. These studies provide interesting insights on how
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to increase the e�ciency and e�ectiveness of the heuristic search for good feature
subsets [185, 210, 48, 81, 257, 5].

5.1.2. Composite features Sometimes the aim is not to choose a good subset of
features, but instead to �nd a few good \composite" features, which are arithmetic
or logical combinations of the atomic features. In the decision tree literature, Hen-
richon and Fu [149] were probably the �rst to discuss \transgenerated" features,
features generated from the original attributes. Friedman's [113] tree induction
method could consider with equal ease atomic and composite features. Techniques
to search for multivariate splits (Section 3.2) can be seen as ways for constructing
composite features. Use of linear regression to �nd good feature combinations has
been explored recently in [28].
Discovery of good combinations of Boolean features to be used as tests at tree

nodes is explored in the machine learning literature in [284] as well as in signal pro-
cessing [14]. Ragavan and Rendell [310] describe a method that constructs Boolean
features using lookahead, and uses the constructed feature combinations as tests
at tree nodes. Lookahead for construction of Boolean feature combinations is also
considered in [389]. Linear threshold unit trees for Boolean functions are described
in [321]. Decision trees having �rst order predicate calculus representations, with
Horn clauses as tests at internal nodes, are considered in [375].

5.1.3. Subsample selection Feature subset selection attempts to choose useful
features. Similarly, subsample selection attempts to choose appropriate training
samples for induction. Quinlan suggested \windowing", a random training set
sampling method, for his programs ID3 and C4.5 [306, 382]. A initially randomly
chosen window can be iteratively expanded to include only the \important" training
samples. Several ways of choosing representative samples for Nearest Neighbor
learning methods exist (see [74, 75], for examples). Some of these techniques may
be helpful for inducing decision trees on large samples, provided they are e�cient.
Oates and Jensen recently analyzed the e�ect of training set size on decision tree
complexity [280].

5.2. Incorporating costs

In most real-world domains, attributes can have costs of measurement, and objects
can have misclassi�cation costs. If the measurement (misclassi�cation) costs are
not identical between di�erent attributes (classes), decision tree algorithms may
need to explicitly prefer cheaper trees. Several attempts have been made to make
tree construction cost-sensitive. These involve incorporating attribute measurement
costs (machine learning: [278, 279, 354, 360], pattern recognition: [77, 261], statis-
tics: [184]) and incorporating misclassi�cation costs [31, 66, 83, 51, 360]. Methods
to incorporate attribute measurement costs typically include a cost term into the
feature evaluation criterion, whereas variable misclassi�cation costs are accounted
for by using prior probabilities or cost matrices.
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5.3. Missing attribute values

In real world data sets, it is often the case that some attribute values are missing
from the data. Several researchers have addressed the problem of dealing with
missing attribute values in the training as well as testing sets. For training data,
Friedman [113] suggested that all objects with missing attribute values can be
ignored while forming the split at each node. If it is feared that too much discrim-
ination information will be lost due to ignoring, missing values may be substituted
by the mean value of the particular feature in the training subsample in question.
Once a split is formed, all objects with missing values can be passed down to all
child nodes, both in the training and testing stages. The classi�cation of an object
with missing attribute values will be the largest represented class in the union of
all the leaf nodes at which the object ends up. Breiman et al.'s CART system [31]
more or less implemented Friedman's suggestions. Quinlan [304] also considered
the problem of missing attribute values.

5.4. Improving upon greedy induction

Most tree induction systems use a greedy approach | trees are induced top-down,
a node at a time. Several authors (e.g., [117, 311]) pointed out the inadequacy of
greedy induction for di�cult concepts. The problem of inducing globally optimal
decision trees has been addressed time and again. For early work using dynamic
programming and branch-and-bound techniques to convert decision tables to opti-
mal trees, see [259].
Tree construction using partial or exhaustive lookahead has been considered in

statistics [103, 57, 88], in pattern recognition [142], for tree structured vector quan-
tizers [315], for Bayesian class probability trees [44], for neural trees [72] and in
machine learning [278, 310, 271]. Most of these studies indicate that lookahead
does not cause considerable improvements over greedy induction. Murthy and
Salzberg [271] demonstrate that one-level lookahead does not help build signi�-
cantly better trees and can actually worsen the quality of trees, causing pathology

[273]. This seemingly unintuitive behavior is caused because of the way feature
selection heuristics are de�ned and used within the greedy framework.
Constructing optimal or near-optimal decision trees using a two-stage approach

has been attempted by many authors. In the �rst stage, a su�cient partitioning is
induced using any reasonably good (greedy) method. In the second stage, the tree
is re�ned to be as close to optimal as possible. Re�nement techniques attempted
include dynamic programming [241], fuzzy logic search [373] and multi-linear pro-
gramming [23].
The build-and-re�ne strategy can be seen as a search through the space of all

possible decision trees, starting at the greedily built suboptimal tree. In order to
escape local minima in the search space, randomized search techniques, such as ge-
netic programming [197] and simulated annealing [38, 228], have been attempted.
These methods search the space of all decision trees using random perturbations,
additions and deletions of the splits. A deterministic hill-climbing search procedure
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has also been suggested for searching for optimal trees, in the context of sequential
fault diagnosis [349]. Kroger [200] discusses the strategies and algorithm improve-
ments needed to generate \optimal" classi�cation trees.

Inducing topologically minimal trees, trees in which the number of occurrences
of each attribute along each path are minimized, is the topic of [369]. Suen and
Wang [348] described an algorithm that attempted to minimize the entropy of the
whole tree and the class overlap simultaneously. (Class overlap is measured by the
number of terminal nodes that represent the same class.)

5.5. Estimating probabilities

Decision trees have crisp decisions at leaf nodes. On the contrary, class probability
trees assign a probability distribution for all classes at the terminal nodes. Breiman
et al. ([31], Chapter 4) proposed a method for building class probability trees.
Quinlan [305] discussed methods of extracting probabilities from decision trees.
Buntine [44] described Bayesian methods for building, smoothing and averaging
class probability trees. (Smoothing is the process of adjusting probabilities at a node
in the tree based on the probabilities at other nodes on the same path. Averaging
improves probability estimates by considering multiple trees.) Smoothing in the
context of tree structured vector quantizers is described in [14]. An approach,
which re�nes the class probability estimates in a greedily induced decision tree
using local kernel density estimates has been suggested in [345].

Assignment of probabilistic goodness to splits in a decision tree is described in
[136]. A uni�ed methodology for combining uncertainties associated with attributes
into that of a given test, which can then be systematically propagated down the
decision tree, is given in [256].

5.6. Multiple trees

A known peril of decision tree construction is its variance, especially when the
samples are small and the features are many [79]. Variance can be caused by
random choice of training and pruning samples, by many equally good attributes
only one of which can be chosen at a node, due to cross validation or because of
other reasons. Many authors have suggested using a collection of decision trees,
instead of just one, to reduce the variance in classi�cation performance [207, 339,
340, 44, 146, 30]. The idea is to build a set of (correlated or uncorrelated) trees for
the same training sample, and then combine their results. 16 Multiple trees have
been built using randomness [146] or using di�erent subsets of attributes for each
tree [339, 340]. Classi�cation results of the trees have been combined using either
simplistic voting methods [146] or using statistical methods for combining evidence
[339]. The relationship between the correlation of errors of individual classi�ers
and the error of the combined classi�er has been explored [9].

An alternative to multiple trees is a hybrid classi�er that uses several small classi-
�ers as parts of a larger classi�er. Brodley [34] describes a system that automatically



22 SREERAMA K. MURTHY

selects the most suitable among a univariate decision tree, a linear discriminant and
an instance based classi�er at each node of a hierarchical, recursive classi�er.

5.7. Incremental tree induction

Most tree induction algorithms use batch training | the entire tree needs to be
recomputed to accommodate a new training example. A crucial property of neural
network training methods is that they are incremental | network weights can be
continually adjusted to accommodate training examples. Incremental induction
of decision trees is considered by several authors. Friedman's [113] binary tree
induction method could use \adaptive" features for some splits. An adaptive split
depends on the training subsample it is splitting. (An overly simple example of
an adaptive split is a test on the mean value of a feature.) Utgo� et al. proposed
incremental tree induction methods in the context of univariate decision trees [361,
363, 364] as well as multivariate trees [365]. Crawford [69] argues that approaches
which attempt to update the tree so that the \best" split according to the updated
sample is taken at each node, su�er from repeated restructuring. This occurs
because the best split at a node vacillates widely while the sample at the node is
still small. An incremental version of CART that uses signi�cance thresholds to
avoid the above problem is described in [69].

5.8. Soft splits

Two common criticisms of decision trees are the following: (1) As decisions in the
lower levels of a tree are based on increasingly smaller fragments of the data, some
of them may not have much probabilistic signi�cance (data fragmentation). (2) As
several leaf nodes can represent the same class, unnecessarily large trees may result,
especially when the number of classes is large (high class overlap).
Several researchers have considered using soft splits of data for decision trees.

A hard split divides the data into mutually exclusive partitions. A soft split, on
the other hand, assigns a probability that each point belongs to a partition, thus
allowing points to belong to multiple partitions. C4.5 [306] uses a simple form of soft
splitting. Use of soft splits in pattern recognition literature can be found in [330,
373]. Jordan and Jacobs [170] describe a parametric, hierarchical classi�er with
soft splits. Multivariate regression trees using soft splitting criteria are considered
[109]. Induction of fuzzy decision trees has been considered in [211, 387].

5.9. Tree quality measures

The fact that several trees can correctly represent the same data raises the question
of how to decide that one tree is better than another. Several measures have been
suggested to quantify tree quality. Moret [259] summarizes work on measures such
as tree size, expected testing cost and worst-case testing cost. He shows that these
three measures are pairwise incompatible, which implies that an algorithm mini-
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mizing one measure is guaranteed not to minimize the others, for some tree. Fayyad
and Irani [97] argue that, by concentrating on optimizing one measure, number of
leaf nodes, one can achieve performance improvement along other measures.
Generalization accuracy is a popular measure for quantifying the goodness of

learning systems. The accuracy of the tree is computed using a testing set that is
independent of the training set or using estimation techniques like cross-validation
or bootstrap. 10-fold cross-validation is generally believed to be a good \honest"
assessment of tree predictive quality. Kononenko and Bratko [194] pointed out that
comparisons on the basis of classi�cation accuracy are unreliable, because di�erent
classi�ers produce di�erent types of estimates (e.g., some produce yes-or-no classi-
�cations, some output class probabilities) and accuracy values can vary with prior
probabilities of the classes. They suggested an information based metric to evaluate
a classi�er, as a remedy to the above problems. Martin [234] argued that infor-
mation theoretic measures of classi�er complexity are not practically computable
except within severely restricted families of classi�ers, and suggested a generalized
version of CART's [31] 1-standard error rule as a means of achieving a tradeo�
between classi�er complexity and accuracy.
Description length, the number of bits required to \code" the tree and the data

using some compact encoding, has been suggested as a means to combine the ac-
curacy and complexity of a classi�er [309, 112] .

5.10. Miscellaneous

Most existing tree induction systems proceed in a greedy top-down fashion. Bottom
up induction of trees is considered in [209]. Bottom up tree induction is also
common [291] in problems such as building identi�cation keys and optimal test
sequences. A hybrid approach to tree construction, that combined top-down and
bottom-up induction can be found in [182].
We concentrate in this paper on decision trees that are constructed from labeled

examples. The problem of learning trees from decision rules instead of examples
is addressed in [162]. The problem of learning trees solely from prior probability
distributions is considered in [11]. Learning decision trees from qualitative causal
models acquired from domain experts is the topic of [295]. Given a trained network
or any other learned model, Craven's algorithmTREPAN [68] uses queries to induce
a decision tree that approximates the function represented by the model.
Several attempts at generalizing the decision tree representation exist. Chou [56]

considered decision trellises, where trellises are directed acyclic graphs with class
probability vectors at the leaves and tests at internal nodes. Option trees, in which
every internal node holds several optional tests along with their respective subtrees,
are discussed in [43, 44]. Oliver [281] suggested a method to build decision graphs,
which are similar to Chou's decision trellises, using minimum length encoding prin-
ciples [370]. Rymon [318] suggested SE-trees, set enumeration structures each of
which can embed several decision trees.
Cox [65] argues that classi�cation tree technology, as implemented in commer-

cially available systems, is often more useful for pattern recognition than it is for
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decision support. He suggests several ways of modifying existing methods to be
prescriptive rather than descriptive.
An interesting method for displaying decision trees on multidimensional data,

using block diagrams, is proposed in [355]. Block diagrams can point out features
of the data as well as the de�ciencies in the classi�cation method. Parallelization
of tree induction algorithms is discussed in detail in [293]. Hardware architectures
to implement decision trees are described in [164].

6. Analyses

Researchers have tried to evaluate the tree induction method itself, to precisely
answer questions such as \is it possible to build optimal trees?" and \how good
is a speci�c feature evaluation rule?". Most such investigations are theoretical,
though there have been a few recent empirical ones.

6.1. NP-completeness

Several aspects of optimal tree construction are shown to be intractable. Hya�l and
Rivest [155] proved that the problem of building optimal decision trees from decision
tables, optimal in the sense of minimizing the expected number of tests required
to classify an unknown sample, is NP-Complete. For sequential fault diagnosis,
Cox et al.[67] showed that, for an arbitrary distribution of attribute costs and for
an arbitrary distribution of input vectors, the problem of constructing a minimum
expected cost classi�cation tree to represent a simple function, the linear threshold
function, is NP-complete. They show that even the problem of identifying the root
node in an optimal strategy is NP-hard. The problem of building optimal trees
from decision tables is considered by Murphy and McCraw [264], who proved that
for most cases, construction of storage optimal trees is NP-complete. Naumov [274]
proved that optimal decision tree construction from decision tables is NP-complete
under a variety of measures. All the measures considered by the earlier papers on
NP-completeness appear to be a subset of Naumov's measures. The problem of
constructing the smallest decision tree which best distinguishes characteristics of
multiple distinct groups is shown to be NP-complete in [358].
Comer and Sethi [63] studied the asymptotic complexity of trie index construction

in the document retrieval literature. Megiddo [240] investigated the problem of
polyhedral separability (separating two sets of points using k hyper-planes), and
proved that several variants of this problem are NP-complete. Results in the above
three papers throw light on the complexity of decision tree induction. Lin et al.

[216, 215] discussed NP-hardness of the problem of designing optimal pruned tree
structured vector quantizers (TSVQ).
Most of the above results consider only univariate decision tree construction.

Intuitively, linear or multivariate tree construction should be more di�cult than
univariate tree construction, as there is a much larger space of splits to be searched.
Heath [145] proved that the problem of �nding the split that minimizes the number
of misclassi�ed points, given two sets of mutually exclusive points, is NP-complete.
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Hoe�gen et al. [151] proved that a more general problem is NP-hard | they proved
that, for any C � 1, the problem of �nding a hyper-plane that misclassi�es no
more than C �opt examples, where opt is the minimumnumber of misclassi�cations
possible using a hyper-plane, is also NP-hard.
As the problem of �nding a single linear split is NP-hard, it is no surprise that

the problem of building the optimal linear decision trees is NP-hard. However, one
might hope that, by reducing the size of the decision tree, or the dimensionality of
the data, it might be possible to make the problem tractable. This does not seem to
be the case either . Blum and Rivest [24] showed that the problem of constructing
an optimal 3-node neural network is NP-complete. Goodrich [130] proved that
optimal (smallest) linear decision tree construction is NP-complete even in three
dimensions.

6.2. Theoretical Insights

Goodman and Smyth [128] showed that greedy top-down induction of decision trees
is directly equivalent to a form of Shannon-Fano pre�x coding [96]. A consequence
of this result is that top-down tree induction (using mutual information) is necessar-
ily suboptimal in terms of average tree depth. Trees of maximal size generated by
the CART algorithm [31] have been shown to have an error rate bounded by twice
the Bayes error rate, and to be asymptotically Bayes optimal [131]. Miyakawa [251]
considered the problem of converting decision tables to optimal trees, and studied
the properties of optimal variables, the class of attributes only members of which
can be used at the root of an optimal tree. Eades and Staples [86] showed that
the optimality in search trees, in terms of worst-case depth, is very closely related
to regularity. 17 As irregular trees are not likely to be optimal, splitting rules (Sec-
tion 3.1) that tend to slice o� small corners of the attribute space building highly
unbalanced trees are less likely to �nd optimal trees.
Some authors pointed out the similarity or equivalence between the problem of

constructing decision trees and existing, seemingly unrelated, problems. Such in-
sights provide valuable tools for analyzing decision trees. Wang and Suen [372] show
that entropy-reduction point of view is powerful in theoretically bounding search
depth and classi�cation error. Chou and Gray [58] view decision trees as variable-
length encoder-decoder pairs, and show that rate is equivalent to tree depth while
distortion is the probability of misclassi�cation. Brandman et al. [29] suggested a
universal technique to lower bound the size and other characteristics of decision
trees for arbitrary Boolean functions. This technique is based on the power spec-
trum coe�cients of the n-dimensional Fourier transform of the function. Turksen
and Zhao [359] proved the equivalence between a pseudo-Boolean analysis and the
ID3 algorithm [301].

6.3. Assumptions and biases

Most tree induction methods are heuristic in nature. They use several assumptions
and biases, hoping that together the heuristics produce good trees. Some authors
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have attempted to evaluate the validity and relevance of the assumptions and biases
in tree induction. 18

Assumption: Multi-stage classi�ers may be more accurate than single stage classi-

�ers. Analysis: However, the data fragmentation caused by multi-stage hierarchical
classi�ers may compensate for the gain in accuracy. Michie [243] argues that top-
down induction algorithms may provide overly complex classi�ers that have no real
conceptual structure in encoding relevant knowledge. As a solution to this prob-
lem, Gray [132] suggested an induction method that generates a single disjuncts of
conjuncts rule, using the same time complexity as tree induction. The e�cacy of
multi-level decision trees is compared by Holte [152] to simple, one-level classi�ca-
tion rules. He concluded that, on most real world data sets commonly used by the
machine learning community [266], decision trees do not perform signi�cantly bet-
ter than one level rules. These conclusions, however, were refuted by Elomaa [89]
on several grounds. Elomaa argued that Holte's observations may have been the
peculiarities of the data he used, and that the slight di�erences in accuracy that
Holte observed were still signi�cant.

Bias: Smaller consistent decision trees have higher generalization accuracy than

larger consistent trees (Occam's Razor). Analysis: Murphy and Pazzani [267] em-
pirically investigated the truth of this bias. Their experiments indicate that this
conjecture seems to be true. However, their experiments indicate that the small-
est decision trees typically have lesser generalization accuracy than trees that are
slightly larger. In an extension of this study, Murphy [265] evaluated the size bias
as a function of concept size. He concluded that (1) bias for smaller trees is gener-
ally bene�cial in terms of accuracy and that (2) though larger trees perform better
than smaller ones for high-complexity concepts, it is better to guess the correct size
randomly than to have a pre-speci�ed size bias.

Assumption: Locally optimizing information or distance based splitting criteria,

(Section 3.1) tends to produce small, shallow, accurate trees. Analysis: A class of
binary splits S for a data set is said to be complete if, informally, for every partition
of the data, there exists a member of S that induces the partition. Zimmerman [390]
considered the problem of building identi�cation keys for complete classes of splits,
given arbitrary class distributions. Garey and Graham [117] analyze the properties
of recursive greedy splitting on the quality of trees induced from decision tables, and
showed that greedy algorithms using information theoretic splitting criteria can be
made to perform arbitrarily worse than the optimal. Kurzynski [204] showed that,
for globally optimum performance, decisions made at each node should \emphasize
the decision that leads to a greater joint probability of correct classi�cation at
the next level", i.e., decisions made at di�erent nodes in the tree should not be
independent. Loveland [222] analyzed the performance of variants of Gini index in
the context of sequential fault diagnosis.

Goodman and Smyth [128, 129] analyzed greedy tree induction from an informa-
tion theoretic view point. They proved that mutual information-based induction is
equivalent to a form of Shannon-Fano pre�x coding, and through this insight argued
that greedily induced trees are nearly optimal in terms of depth. This conjecture
is substantiated empirically in [270], where it is shown that the expected depth of
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trees greedily induced using information gain [301] and Gini index [31] is very close
to that of the optimal, under a variety of experimental conditions. Relationship
between feature evaluation by Shannon's entropy and the probability of error is
investigated in [196, 312].

7. The practical promise

The discussion so far in the paper has concentrated on techniques for and analysis of
decision tree construction. All these are in vain unless this technique is practically
useful and perhaps outperforms some competitive techniques. In this section, we
address these two issues. We argue that decision trees are practically a very useful
technique, by tabulating examples of their use in diverse real-world applications.
We brie
y discuss existing software packages for building decision trees from data.
We also summarize work comparing decision trees to alternative techniques for
data analysis, such as neural networks, nearest neighbor methods and regression
analysis.

7.1. Selected real-world applications

This section lists a few recent real-world applications of decision trees. The aim is
to give the reader a \feel" for the versatility and usefulness of decision tree meth-
ods for data exploration, and not to be useful for readers interested in �nding the
potential of tree classi�ers in speci�c domains. Our coverage of applications is,
by necessity, very limited. All the application papers cited below were published
in refereed journals or as Ph.D theses, after 1993. We restrict to application do-
mains where the domain scientists tried to use decision trees, rather than where
decision tree researchers tested their algorithm(s) on several application domains.
The application areas are listed below in alphabetical order.

� Agriculture: Application of a range of machine learning methods including
decision trees to problems in agriculture and horticulture is described in [239].

� Astronomy: Astronomy has been an active domain for using automated clas-
si�cation techniques. 19 Use of decision trees has been reported for �ltering noise
from Hubble Space Telescope images [323], in star-galaxy classi�cation [378],
for determining galaxy counts [377] and discovering quasars [180] in the Second
Palomar Sky Survey.

� Biomedical Engineering: For identifying features to be used in implantable
devices [123].

� Control Systems: For control of nonlinear dynamical systems [154] and con-
trol of 
otation plants [8].

� Financial analysis: For asserting the attractiveness of buy-writes [242], among
many other data mining applications.
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� Image processing: For the interpretation of digital images in radiology [294],
for recognizing 3-D objects [39], for high level vision [187] and outdoor image
segmentation [40].

� Language processing: For medical text classi�cation [212], for acquiring a
statistical parser from a set of parsed sentences [229].

� Law: For discovering knowledge in international con
ict and con
ict man-
agement databases, for the possible avoidance and termination of crises and
wars [116].

� Manufacturing and Production: To non-destructively test welding quality
[90], for semiconductor manufacturing [163], for increasing productivity [179],
for material procurement method selection [73], to accelerate rotogravure print-
ing [92], for process optimization in electro-chemical machining [95], to schedule
printed circuit board assembly lines [296], to uncover 
aws in a Boeing manu-
facturing process [313] and for quality control [135]. For a recent review of the
use of machine learning (decision trees and other techniques) in scheduling, see
[13].

� Medicine: Medical research and practice have long been important areas of
application for decision tree techniques. Recent uses of automatic induction of
decision trees can be found in cardiology [221, 94, 192], study of tooth enamel
[277], psychiatry [238], gastroenterology [171], for detecting microcalci�cations
in mammography [385], to analyze Sudden Infant Death (SID) syndrome [381]
and for diagnosing thyroid disorders [104].

� Molecular biology: Initiatives such as the Human Genome Project and the
GenBank database o�er fascinating opportunities for machine learning and
other data exploration methods in molecular biology. Recent use of decision
trees for analyzing amino acid sequences can be found in [338] and [322].

� Pharmacology: Use of tree based classi�cation for drug analysis can be found
in [71].

� Physics: For the detection of physical particles [26].

� Plant diseases: To assess the hazard of mortality to pine trees [16].

� Power systems: For power system security assessment [144] and power sta-
bility prediction [317].

� Remote Sensing: Remote sensing has been a strong application area for
pattern recognition work on decision trees (see [350, 182] ). Recent uses of
tree-based classi�cation in remote sensing can be found in [319, 82, 208].

� Software development: To estimate the development e�ort of a given soft-
ware module in [199].

� Other: Decision trees have also been used recently for building personal learn-
ing assistants [250] and for classifying sleep signals [201].
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7.2. Software packages

Today, there are many research codes and commercial products whose purpose is
constructing decision trees from data. In addition, decision tree construction is a
primary function provided in many general-purpose data mining tool suites. In the
interest of brevity we will not survey decision tree software tools here. A good list of
current software can be found in the \Siftware" section in the Knowledge Discovery
Nuggets web page http://www.kdnuggets.com/siftware.html. 20 In addition to the
decision-tree entries, many entries listed under \software suites" and \classi�cation
using multiple approaches" are also relevant.
Available decision tree software varies in terms of the speci�c algorithms imple-

mented, sophistication of auxiliary functions such as visualization, data formats
supported and speed. The web page above just lists decision tree (and other)
software packages. It does not evaluate them. Objective comparative evaluation
of decision tree software, in terms of available functionality, programmability, e�-
ciency, user-friendliness, visualization support, database interface and price would
be a very interesting, relevant but not necessarily an easy or straightforward exer-
cise. The author is unaware of any existing comparisons.
It is perhaps important to point out that no single available software program

implements all that is known about decision trees. Each package chooses its fa-
vorite algorithms and heuristics to implement. These choices should not be seen
as shortcomings of the packages, because implementing everything known is a very
signi�cant task which may have primarily research value.

7.3. Trees versus other data analysis methods

This section, like Section 7.1 above, is not comprehensive but merely illustrative.
We briskly provide pointers to work that has compared decision trees against com-
peting techniques for data analysis in statistics and machine learning.
Brown et al. [36] compared back-propagation neural networks with decision trees

on three problems that are known to be multi-modal. Their analysis indicated that
there was not much di�erence between both methods, and that neither method per-
formed very well in its \vanilla" state. The performance of decision trees improved
in their study when multivariate splits were used, and back-propagation networks
did better with feature selection. Comparisons of symbolic and connectionist meth-
ods can also be found in [379, 337]. Multi-layer perceptrons and CART [31] with
and without linear combinations are compared in [12] to �nd that there is not much
di�erence in accuracy. Similar conclusions were reached in [106] when ID3 [301] and
back-propagation were compared. Talmon et al. [352] compared classi�cation trees
and neural networks for analyzing electrocardiograms (ECG) and concluded that
no technique is superior to the other. In contrast, ID3 is adjudged to be slightly
better than connectionist and Bayesian methods in [347].
Giplin et al. [125] compared stepwise linear discriminant analysis, stepwise logis-

tic regression and CART [31] to three senior cardiologists, for predicting whether
a patient would die within a year of being discharged after an acute myocardial in-
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farction. Their results showed that there was no di�erence between the physicians
and the computers, in terms of the prediction accuracy. Kors and Van Bemmel
[195] compared statistical multivariate methods with heuristic decision tree meth-
ods, in the domain of electrocardiogram (ECG) analysis. Their comparisons show
that decision tree classi�ers are more comprehensible and 
exible to incorporate
or change existing categories. Comparisons of CART to multiple linear regression
and discriminant analysis can be found in [46] where it is argued that CART is
more suitable than the other methods for very noisy domains with lots of missing
values. Comparisons between decision trees and statistical methods like linear dis-
criminant function analysis and automatic interaction detection (AID) are given in
[237], where it is argued that machine learning methods sometimes outperform the
statistical methods and so should not be ignored.
Feng et al. [102] present a comparison of several machine learning methods (in-

cluding decision trees, neural networks and statistical classi�ers) as a part of the
European Statlog project. The Statlog project [244] was initiated by the European
Commission for \The Comparative Testing of Statistical and Logical Learning Al-
gorithms on Large-Scale Applications to Classi�cation, Prediction and Control".
Feng et al.'s main conclusions were that (1) no method seems uniformly superior
to others, (2) machine learning methods seem to be superior for multimodal distri-
butions, and (3) statistical methods are computationally the most e�cient. Thrun
et al. [356] compared several learning algorithms on simulated Monk's problems.
Long et al. [221] compared Quinlan's C4 [306] to logistic regression on the problem

of diagnosing acute cardiac ischemia, and concluded that both methods came fairly
close to the expertise of the physicians. In their experiments, logistic regression
outperformed C4. Curram and Mingers [70] compare decision trees, neural networks
and discriminant analysis on several real world data sets. Their comparisons reveal
that linear discriminant analysis is the fastest of the methods, when the underlying
assumptions are met, and that decision trees methods over�t in the presence of
noise. Dietterich et al. [78] argue that the inadequacy of trees for certain domains
may be due to the fact that trees are unable to take into account some statistical
information that is available to other methods like neural networks. They show that
decision trees perform signi�cantly better on the text-to-speech conversion problem
when extra statistical knowledge is provided.
Pizzi and Jackson [297] compare an expert system developed using traditional

knowledge engineering methods to Quinlan's ID3 [301] in the domain of tonsillec-
tomy. Quinlan empirically compared decision trees to genetic classi�ers [303] and
to neural networks [307]. Palvia and Gordon [287] compared decision tables, de-
cision trees and decision rules, to determine which formalism is best for decision
analysis. Many methods for learning from examples are compared in an early study
by Dietterich and Michalski [80].

8. Conclusions

This paper attempted a multi-disciplinary survey of work in automatically con-
structing decision trees from data. We gave pointers to work in �elds such as pattern
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recognition, statistics, decision theory, machine learning, mathematical program-
ming and neural networks. We attempted to provide a concise description of the
directions which decision tree work has taken over the years. Our goal is to provide
an overview of existing work in decision trees, and a taste of their usefulness, to
the newcomers as well as practitioners in the �eld of data mining and knowledge
discovery. We also hope that overviews like these can help avoid some redundant,
ad hoc e�ort, both from researchers and from system developers.

The hierarchical, recursive tree construction methodology is very powerful and
has repeatedly been shown to be useful for diverse real-world problems. It is also
simple and intuitively appealing. However, the simplicity of the methodology should
not lead a practitioner to take a slack attitude towards using decision trees. Just
as in the case of statistical methods or neural networks, building a successful tree
classi�er for an application requires a thorough understanding of the problem itself,
and a deep knowledge of tree methodology.
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Notes

1. This is adapted from [282], where a similar taxonomy was suggested in the general framework
of searching for structure in data.

2. Several earlier data mining products are old machine learning methods just repackaged under
new titles.

3. Lubinsky [226] considered trees that can have internal nodes with just one child. At these
nodes, the data are not split, but residuals are taken from a single variable regression.

4. While converting decision tables to trees, it is common to have leaf nodes that have a \no
decision" label. (A good recent paper on the use of decision tables in classi�cation is [189].)

5. A decision tree is said to perform classi�cation if the class labels are discrete values, and
regression if the class labels are continuous. We restrict almost entirely to classi�cation trees
in this paper.

6. One interesting early patenton decision tree growingwas assigned to IBM (US Patent 4,719,571).

7. The desirable properties of a measure of entropy include symmetry, expandability, decisivity,
additivity and recursivity. Shannon's entropy [336] possesses all of these properties [4]. For
an insightful treatment of entropy reduction as a common theme underlying several pattern
recognition problems, see [376].

8. Goodman and Smyth [128] report that the idea of using the mutual information between
features and classes to select the best feature was originally put forward by Lewis [213].

9. named after the Italian economist Corrado Gini (1884{1965)

10.Quinlan's C4.5 [306] uses a naive version of the con�dence intervals for doing pessimistic
pruning.
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11.Scha�er [327] stated and proved a conservation theorem that states, essentially, that positive
performance in some learning situations must be o�set by an equal degree of negative per-
formance in others. To clarify the, sometimes non-intuitive, consequences of the conservation
theorem, Scha�er [328] gave an example of a concept for which information loss gives better
generalization accuracy than information gain. Scha�er's work draws heavily upon Wolpert's
earlier results [384, 383].

12.Trees in which an internal node can have more than 2 children, have also been considered in
the vector quantization literature [329].

13.Techniques that start with a su�cient partitioning and then optimize the structure (e.g., [241])
can be thought of as being a converse to this approach.

14. In bootstrapping, B independent learning samples, each of size N are created by random
sampling with replacement from the original learning sample L. In cross validation, L is
divided randomly into B mutually exclusive, equal sized partitions. Efron [87] showed that,
althoughcross validationclosely approximatesthe true result, bootstraphas much less variance,
especially for small samples. However, there exist arguments that cross validation is clearly
preferable to bootstrap in practice [190].

15.Van Campenhout [47] argues that increasing the amount of information in a measurement
subset through enlarging its size or complexity never worsens the error probability of a truly
Bayesian classi�er. Even after this guarantee, the cost and complexity due to additional
measurements may not be worth the slight (if any) improvement in accuracy. Moreover, most
real world classi�ers are not truly Bayesian.

16.A lot of work exists in the neural networks literature on using committees or ensembles of
networks to improve classi�cation performance. See [140] for example.

17.A c-regular tree is a tree in which all nodes have c children, and if one child of an internal node
is a leaf, then so are all other children. A tree is regular is it is c-regular for any c.

18. It is argued empirically [79] that the variance in decision tree methods is more a reason than
bias for their poor performance on some domains.

19.For a general description of modern classi�cation problems in astronomy, which prompt the
use of pattern recognition and machine learning techniques, see [203].

20.Considerable ongoing discussion exists about the appropriateness of Internet references in
scholarly publications. Critics argue that such references assume the availability of the Inter-
net/WWW to the readership as well as the relative permanence and continued correctness of
the referenced articles. While acknowledging the merits of such criticism, we nevertheless re-
sort to referencing the KDNuggets web site here. This is partly because any reasonable survey
of decision tree software tools would be involved and long, and has a relatively brief life span
because of the ever-evolving nature of the market.
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