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Abstract

We propose a new method for estimation in linear models. The “lasso”
minimizes the residual sum of squares subject to the sum of the absolute
value of the coefficients being less than a constant. Because of the nature
of this constraint it tends to produce some coefficients that are exactly zero
and hence gives interpretable models. Our simulation studies suggest that
the lasso enjoys some of the favourable properties of both subset selection
and ridge regression. It produces interpretable models like subset selection
and exhibits the stability of ridge regression. There is also an interesting
relationship with recent work in adaptive function estimation by Donoho
and Johnstone. The lasso idea is quite general and can be applied in a
variety of statistical models: extensions to generalized regression models
and tree-based models are briefly described.

Keywords: regression, subset selection, shrinkage, quadratic programming.

1 Introduction

Consider the usual regression situation: we have data: (x!,y;), i = 1,2,...N
where x* = (241, . - .rip)T and y; are the regressors and response for the ith
observation. The ordinary least squares (OLS) estimates are obtained by mini-
mizing the residual squared error. There are two reasons why the data analyst
is often not satisfied with the OLS estimates. The first is prediction accuracy:
the OLS estimates often have low bias but large variance; prediction accuracy
can sometimes be improved by shrinking or setting to zero some coefficients. By
doing so we sacrifice a little bit of bias to reduce the variance of the predicted
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values and hence may improve the overall prediction accuracy. The second rea-
son is interpretation. With a large number of predictors, we often would like to
determine a smaller subset that exhibit the strongest effects.

The two standard techniques for improving the OLS estimates, subset selec-
tion and ridge regression, both have drawbacks. Subset selection provides inter-
pretable models but can be extremely variable because it is a discrete process—
regressors are either retained or dropped from the model. Small changes in the
data can result in very different models being selected and this can reduce its
prediction accuracy. Ridge regression is a continuous process that shrinks coef-
ficients and hence is more stable: however, it doesn’t set any coefficients to zero
and hence doesn’t give an easily interpretable model.

We propose a new technique, called the lasso, for “Least Absolute Shrinkage
and Selection Operator”. It shrinks some coefficients and sets others to zero,
and hence tries to retain the good features of both subset selection and ridge
regression.

In section 2 we define the lasso, and look at some special cases. A real
data example is given in section 3, while in section 4 we discuss methods for
estimation of prediction error and the lasso shrinkage parameter. A Bayes model
for the lasso is briefly mentioned in section 5. We describe the lasso algorithm
in section 6. Simulation studies are described in section 7. Sections 8 and 9
discuss extensions to generalized regression models and other problems. Some
results on soft-thresholding and their relation to the lasso is discussed in section
10, while Section 11 contains a summary and some discussion.

2 The lasso

2.1 Definition

Suppose that we have data (x',y;), i = 1,2,...N where x* = (z;1,...2p)7
are the predictor variables and y; are the responses. As in the usual regression
setup, we assume that either that the observations are independent or that the
y;s are conditionally independent given the z;;s. We assume that the z;; are
standardized so that ), #;;/N =0, «% /N = 1.

Letting 8 = (Bl, .. .BP)T, the lasso estimate (a,B) is defined by

N
(&,B) = argmin Z(yl —a— Zﬁjxlj)z
i=1 i
subject to Z 16;] <t (1)
J

Here ¢t > 0 is a tuning parameter. Now for all ¢, the solution for @ is @ = y. We
can assume without loss of generality that y = 0 and hence omit «a.
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Computation of the solution to (1) is a quadratic programming problem with
linear inequality constraints. We describe some efficient and stable algorithms
for this problem in section 6.

The parameter ¢t > 0 controls the amount of shrinkage that is applied to the
estimates. Let tp = > |B]°| Values of ¢t < ¢, will cause shrinkage of the solutions
towards zero, and some coefficients may be exactly equal to zero. For example,
if t = tg/2, the effect will be roughly similar to finding the best subset of size
p/2. Note that the design matrix need not be of full rank. In section 4 we give
a number of data-based methods for estimation of ¢.

This motivation for the lasso came from an interesting proposal of Breiman
(1993). Breiman’s non-negative garotte minimizes

N

Z(yi —a— chéfxij)Q subject to ¢; > 0, ch <t (2)

i=1 i

The garotte starts with the OLS estimates and shrinks them by non-negative
factors whose sum is constrained. In extensive simulation studies, Breiman
shows that the garotte has consistently lower prediction error than subset se-
lection and is competitive with ridge regression except when the true model has
many small non-zero coefficients.

A drawback of the garotte is that its solution depends on both the sign and
magnitude of the OLS estimates. In overfit or highly correlated settings where
the OLS estimates behave poorly, the garotte may suffer as a result. In contrast,
the lasso avoids explicit use of the OLS estimates.

Frank and Friedman (1993) proposed using a bound on the L? norm of the
parameters, where ¢ is some number > 0; the lasso corresponds to ¢ = 1. We
discuss this briefly in section 10.

2.2 Orthogonal design case

Insight about the nature of the shrinkage can be gleaned from the orthogonal
design case. Let X be the n x p design matrix with ¢jth entry z;;, and suppose
XTX =1, the identity matrix.

The solutions to (1) are easily shown to be

B; = sign(3)(155] — )t (3)

where 7 is determined by the condition |BJ | = t. Interestingly, this has exactly
the same form as the soft shrinkage proposals of Donoho & Johnstone (1994)
and Donoho, Johnstone, Kerkyachairan & Picard (1995), applied to wavelet
coefficients in the context of function estimation. The connection between soft
shrinkage and a minimum L; norm penalty was also pointed out by Donoho,
Johnstone, Hoch & Stern (1992) for non-negative parameters in the context of
signal or image recovery. We elaborate more on this connection in section 10.
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In the orthonormal design case, best subset selection of size k reduces to
choosing the k largest coefficients in absolute value and setting the rest to zero.
For some choice of A this is equivalent to setting 8; = G5 if |ﬁ]°| > A and

. . . L. N
zero otherw1se..R.1dge regression minimizes y ,_, (y; — Zj Bizij)? + A E]. ﬁf or
equivalently, minimizes

N

Z(yi — Zﬁjxij)z subject to Zﬁf <t 4)

i=1 i

The ridge solutions are
1
L+~

where v depends on A or t. The garotte estimates are

T Ve
(- Gp)

Figure 1 shows the form of these functions. Ridge regression scales the
coefficients by a constant factor, while the lasso translates by a constant factor,

g

truncating at zero. The garotte function is very similar to the lasso, with less
shrinkage for larger coefficients. As our simulations will show, the differences
between the lasso and garotte can be large when the design is not orthogonal.

2.3 Geometry of the lasso

It is clear from Figure 1 why the lasso will often produce coefficients that are
exactly zero. Why does this happen in the general (non-orthogonal) setting?
And why does it not occur with ridge regression, which uses the constraint
Eﬁf < t rather than ) |8;] < t? Figure 2 provides some insight for the case
p=2.

The criterion Ef\;l(yi - E]' Bjzij)? equals the quadratic function (8 —

-~ O

BHIXTX(B — EO) (plus a constant). The elliptical contours of this function
are shown by the solid curves in the left panel, there are centered at the OLS
estimates; the constraint region is the rotated square indicated by the broken
lines. The lasso solution is the first place that the contours touch the square,
and this will sometimes occur at a corner, corresponding to a zero coefficient.
The picture for ridge regression is shown on the right: there are no corners for
the contours to hit and hence zero solutions will rarely result.

An interesting question emerges from this picture: can the signs of the lasso
estimates be different from those of the least squares estimates B]Or’ Since the
variables are standardized, when p = 2 the principal axes of the contours are at
+45° to the coordinate axes, and one can show that the contours must contact
the square in the same quadrant that contains BO. However when p > 2 and
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Figure 1: Dark line shows form of coefficient shrinkage from the 45° line for
each technique (orthogonal design case)
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Figure 2: Estimation picture for the lasso (left) and ridge regression (right)

there is at least moderate correlation in the data, this need not be true. Figure
3 shows an example in three dimensions. The view in the right plot confirms
that the ellipse touches the constraint region in a different octant than the one
in which its center lies.

While the garotte retains the sign of each B]O, the lasso can change signs.
Even in cases where the lasso estimate has the same sign vector as the garotte,
the presence of the ordinary least squares estimates in the garotte can make
it behave differently. The model chﬁfxij with constraint ) ¢; < t can be

written as ) B z;; with constraint E@/Bf < t. If for example p = 2 and
Bf > Bg > ( then the effect would be to stretch the square in the left panel of

Figure 2 horizontally. As a result, larger values of 3; and smaller values of 5
will be favoured by the garotte.

2.4 More on the two predictor case

Suppose p = 2, and assume without loss of generality that the least squares
estimates (; are both positive. Then one can show that the lasso estimates are

By = (85 —n)* ()
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Figure 3: Left panel shows an example in which the lasso estimate falls in a
different octant than the overall least squares estimate. Right panel shows an
overhead view.
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where 7 is chosen so that Bl + Bg = t. This formula holds for ¢ < Bf + Bg, and
is valid even if the predictors are correlated. Solving for v yields

Bl — [2+ﬁ1 QﬁZ]
32 — [%_ 61 QﬁZ] (6)

In contrast, the form of ridge regression shrinkage depends on the correlation
of the predictors. Figure 4 shows an example. We generated 100 data points
from the model y = 6x; + 3xz; with no noise. Here z; and xs are standard
normal variates with correlation p. The curves in Figure 4 show the ridge and
lasso estimates as the bounds on 37 + 37 and |31 |+ | /32|, respectively, are varied.
For all values of p the lasso estimates follow the solid curve. The ridge estimates
(broken curves) depend on p. When p = 0 ridge regression does proportional
shrinkage. However for larger values of p the ridge estimates are shrunken
differentially and can even increase a little as the bound is decreased. As pointed
out by Jerome Friedman, this is due to the tendency of ridge regression to try
tomake the coefficients equal in order to minimize their squared norm.

2.5 Standard errors

Since the lasso estimate is a non-linear and non-differentable function of the
response values even for a fixed value of ¢, it is difficult to obtain an accurate
estimate of its standard error. One approach is via the bootstrap: either ¢
can be fixed or we may optimize over ¢ for each bootstrap sample. Fixing ¢ is
analogous to selecting a best subset, and then using the least squares standard
error for that subset.

An approxmlate closed form estimate may be derived by writing the penalty
> 1551 as Eﬁj /18;|. Hence at the lasso estimate B, we may approximate the
solution by a ridge regression of the form 8* = (XTX—I—)\W_ )_1XTy where W
is a diagonal matrix with diagonal elements |Bj|, W™ denotes the generalized
inverse of W and A is chosen so that >~ |5;|* =t. The covariance matrix of the
estimates may then approximated by

(XTX + AW ) IXTX(XTX + AW™) 162, (7)
where 2 is an estimate of the error variance. A difficulty with this formula is
that it gives an estimated variance of zero for predictors with Bj =0.

This approximation also suggests an iterated ridge regression algorithm for
computing the lasso estimate itself, but this turns out to be quite inefficient.
However, it does prove to be useful for selection of the lasso parameter ¢ (section

1).
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Figure 4: Lasso (solid curve) and ridge (broken curves) for the two predictor
example. The curves show the (81, /2) pairs as the bound on the lasso or
ridge parameters is varied. Starting with the bottom broken curve and moving
upward, the correlation p is 0, .23, .45, .68, and .90.
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3 Example- prostate cancer data

This data comes from a study by Stamey et. al. (1989) that examined the
correlation between the level of prostate specific antigen and a number of clinical
measures, in men who were about to receive a radical prostatectomy. The
factors were log cancer volume (lcavol), log prostate weight (lweight), age, log
of benign prostatic hyperplasia amount (Ibph), seminal vesicle invasion (svi),
log of capsular penetration (lcp), Gleason score (gleason), and percent Gleason
scores 4 or 5 (pggd5). We fit a linear model to the log of prostate specific antigen
(Ipsa) after first standardizing the predictors.

Figure 5 shows the lasso estimates as a function of standardized bound s =
/> |B]°| Notice that the absolute value of each coefficient tends to zero as s
goes to zero. In this example, the curves decrease in a monotone fashion to zero,
but this doesn’t always happen in general. This lack of monotonicity is shared
by ridge regression and subset regression, where for example the best subset
of size 5 may not contain the best subset of size 4. The vertical broken line
represents the model for § = .44, the optimal value as selected by generalized
cross-validation. Roughly speaking, this corresponds to keeping just under half
of the predictors.

Table 1 shows the results for the full least squares, best subset and lasso
procedures. Section 7.1 gives the details of the best subset procedure that was
used. The lasso gave non-zero coefficients to lcavol, lweight and svi; subset se-
lection chose the same three predictors. Notice that the coefficients and Z scores
for the selected predictors from subset selection tend to be larger than the full
model values: this is a common occurence with positively correlated predictors.
However the lasso shows the opposite effect, as it shrinks the coefficients and Z
scores from their full model values.

The standard errors in the second column from the right were estimated by
bootstrap resampling of residuals from the full least squares fit. The standard
errors were computed by fixing § at its optimal value 0.44 for the original dataset.
Table 2 compares the the ridge approximation formula (7) with the fixed ¢
bootstrap, and the bootstrap in which ¢ was re-estimated for each sample. The
ridge formula gives a fairly good approximation to the fixed ¢ bootstrap, except
for the zero coefficients. Allowing ¢ to vary incorporates an additional source
of variation, and hence gives larger standard error estimates. Figure 6 shows
boxplots of 200 bootstrap replications of the lasso estimates, with s fixed at the
estimated value 0.44. The predictors whose estimated coefficient is zero exhibit
skewed bootstrap distributions. The central 90% percentile intervals (5th and
95 percentiles of the bootstrap distributions) all contained the value zero, with
the exceptions of those for lcavol and svi.
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Figure 5: Lasso shrinkage of coefficients in prostate cancer example. Each curve
represents a coefficient (labelled on the right) as function of the (scaled) lasso
parameter s =t/ |B]°| The intercept is not plotted. The vertical broken line
represents the model for § = .44, selected by generalized cross-validation.
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Table 1: Results for prostate cancer example
Predictor Least Squares Subset Lasso

Coef Se 7 score | Coef Se 7 score | Coef Se Z score
1. Intcpt 248 0.07 34.46 | 2.48 0.07 34.05 | 2.48 0.07 35.43
2. lcavol 0.69 0.10 6.68 | 0.65 0.09 7.39 | 0.56 0.09 6.22
3. lweight | 0.23 0.08 2.67 1 0.25 0.07 3.39 | 0.10 0.07 1.43
4. age -0.15  0.08 -1.76 | 0.00 0.00 -1 0.00 0.01 0.00
5. lbph 0.16 0.08 1.83 | 0.00 0.00 0.00 | 0.00 0.04 0.00
6. svi 0.32 0.10 3.14 | 1.02 0.28 0.09 | 0.16 0.09 1.78
7. lep -0.15  0.13 -1.16 | 0.00 0.00 -1 0.00 0.03 0.00
8. gleason | 0.03 0.11 0.29 | 0.00 0.00 -1 0.00 0.02 0.00
9. pggdb 0.13 0.12 1.02 | 0.00 0.00 0.00 | 0.00 0.03 0.00

Table 2: Standard error estimates for prostate cancer example

Bootstrap SE

Predictor  Coefficient Fixed ¢ Varyingt SE Approximation (7)
1. Intept 2.48 0.07 0.07 0.07
2. lcavol 0.56 0.08 0.10 0.09
3. lweight 0.10 0.06 0.08 0.06
4. age 0.00 0.04 0.05 0.00
5. lbph 0.00 0.04 0.07 0.00
6. svi 0.16 0.09 0.09 0.07
7. lep 0.00 0.03 0.07 0.00
8. gleason 0.00 0.02 0.05 0.00
9. pggdh 0.00 0.03 0.06 0.00
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Figure 6: Boxplots of 200 bootstrap values of the lasso coefficient estimates for
the 8 predictors in the prostate cancer example.

4 Prediction error and estimation of ¢

In this section we describe three methods for the estimation of the lasso param-
eter t: cross-validation, generalized cross-validation and an analytic unbiassed
estimate of risk. Strictly speaking the first two methods are applicable in the
“X-random” case, where it is assumed that the observations (X,Y’) are drawn
from some unknown distribution, and the third method applies to the the X-
fixed case. However in real problems there is often no clear distinction between
the two scenarios and one might simply choose the most convenient method.
Suppose
Y=nX)+e
where E(e) = 0, var(e¢) = o?. The mean squared error of an estimate 7(X) is
defined by
ME = E(n(X) - n(X))*,
the expected value taken over the joint distribution of X and Y, with 5(X)
fixed. A similar measure is the prediction error of f(X) given by

PE = E(Y — #(X))?> = ME + o? (8)

We estimate the prediction error for the lasso procedure by five-fold cross-
validation as described (for example) in Chapter 17 of Efron & Tibshirani (1993).
The lasso is indexed in terms of the normalized parameter s = ¢/ BJO, and the
prediction error is estimated over a grid of values of s from 0 to 1 inclusive. The
value § yielding the lowest estimated PE is selected.
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Simulation results are reported in terms of ME rather PE. For the linear
models n(X) = X3 considered in this paper, mean-squared error has the simple
form

ME = (8- 8)"V(B - B)
where V is the population covariance matrix of X
A second method for estimating ¢ may be derived from a linear approxima-
tion to the lasso estimate. We write the constraint ) [6;| <t as ) 67/]8;| < t.
This latter constraint is equivalent to adding a Lagrangian penalty A )" 6]2/|ﬁ]|

to the residual sum of squares, with A depending on {. Thus we may write
constrained solution 3 as the ridge regression estimator

A= (X"X + W)Xy (9)

where W = diag(|3;|) and W~ denotes a generalized inverse. Therefore the
number of effective parameters in the constrained fit 3 may be approximated
by

p(t) = tr[X(XTX 4+ AW ™)1 XT]

Letting rss(t) be the residual sum of squares for the constrained fit with con-
straint ¢, we construct the GCV-style statistic:

1 rss(t)

GOV() = =0 /AT (10)

Finally, we outline a third method based on Stein’s unbiased estimate of
risk. Suppose that z is a multivariate normal random vector with mean g and
variance the identity matrix. Let & be an estimator of p, and write 1 = z+g(z)
where g is an almost differential function from RP to RP (see definition 1 of Stein,

1981). Then Stein (1981) showed that
P
Epllin = ull* = p+ Bp[llg(@)| + 2 ) dos/dz) (11)
1

We may apply this result to the lasso estimator (3). Denote the estimated
standard error of B]O by # = ¢/V/N, where 6% = S (i — 9:)*/(N — p). Then
the B]O/i' are (conditionally on X) approximately independent standard normal
variates, and from equation (11) we may derive the formula

RIBO)] ~ 7 [p = 2 43 185 /7] < ) + Y max(|57/7,7)°

as an approximately unbiased estimate of the risk or mean square error E(B(y)—

B3)?, where Bj (v) = s1gn(3f)(|é?/i’| —v)*. Donoho & Johnstone (1994) give a
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similar formula in the function estimation setting. Hence an estimate of v can
be obtained as the minimizer of R[B(7)]:

7y = argmin. o R[B(7)].
From this we obtain an estimate of the lasso parameter ¢:
t=> (s1-n*

Although the derivation of £ assumes an orthogonal design, we may still try
to use it in the usual non-orthogonal setting. Since the predictors have been
standardized, the optimal value of ¢ is roughly a function of the overall signal-
to-noise ratio in the data, it should be relatively insensitive to the covariance
of X. (On the other hand, the form of the lasso estimator is sensitive to the
covariance and we need to account for it properly.)

The simulated examples in section 7.2 suggest that this method gives a
useful estimate of t. But we can offer only a heuristic argument in favour of it.
Suppose XTX =V and let Z = XV~1/2 9 = BV~1/2, Since the columns of
X are standardized, the region ) |6;| < t differs from the the region ) |5;| <t
in shape but has roughly the same-sized marginal projections. Therefore the
optimal value of { should be about the same in each instance.

Finally, note that the Stein method enjoys a significant computational ad-
vantage over the cross validation-based estimation of ¢. In our experiments we
optimized over a grid of 15 values of the lasso parameter ¢ and used 5-fold cross-
validation. As a result, the cross validation approach required 75 applications of
the model optimization procedure of section 6 while the Stein method required
only one. The requirements of the GCV approach are intermediate between the
two, requiring one application of the optimization procedure per grid point.

5 The lasso as a Bayes estimate

The lasso constraint )" |f;| <t is equivalent to the addition of a penalty term
AY"1B;] to the residual sum of squares (see Murray, Gill and Wright, 1981,
chapter 5). Now |@;| is proportional to the (minus) log-density of the double
exponential distribution. As a result one can derive the lasso estimate as the
Bayes posterior mode under independent double exponential priors for the §;s,

1 .
1(55) = 5= exp{-121)
with 7 = 1/A.

Figure 7 shows the double exponential density (solid curve) and the normal
density (broken curve); the latter is the implicit prior used by ridge regression.
Notice how the double exponential density puts more mass near zero and in the
tails. This reflects the greater tendency of the lasso to produce estimates that
are either large or zero.
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Figure 7: The double exponential density (solid curve) and the normal density
(broken curve). The former is the implicit prior used by the lasso; the latter by
ridge regression.
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6 Algorithms for finding the lasso solutions

We fix ¢t > 0. Problem (1) can be expressed as a least squares problem with 2P
inequality constraints, corresponding to the 2P different possible signs for the
B;s. Lawson & Hansen (1974) provide the ingredients for a procedure which
solves the linear least squares problem subject to a general linear inequality
constraint GB < h. Here G is an m X p matrix, corresponding to m linear
inequality constraints on the p-vector 8. For our problem however, m = 2P
may be very large so that direct application of this procedure is not practical.
However the problem can be solved by introducing the inequality constraints
sequentially, seeking a feasible solution satisfying the so-called Kuhn-Tucker
conditions (Lawson and Hansen, 1974). We outline the procedure below.

Let g(8) = Ef\;l(yi - E]' Bjzij)?, and let §;, i = 1,2,...27 be the p-tuples
of the form (£1,+£1,... £ 1). Then the condition ) |F;| < t is equivalent to
673 <t foralli Foragivenp let E={i:6:B=1}and S=1{i:6:8<t}.
The set F is the equality set, corresponding to those constraints which are
exactly met, while S is the slack set, corresponding to those constraints for
which equality does not hold. Denote by Gg the matrix whose rows are §; for
t € F. Let 1 be a vector of ones of length equal to the number of rows of Gg.

The algorithm below starts with £ = {ip} where &;, = sign(3), B being
the overall least squares estimate. It solves the least squares problem subject
to 627;ﬁ <t and then checks if ) |3;| < t. If so, the computation is complete;
if not, the violated constraint is added to £ and the process is continued until

Y18 <t

Here is an outline of the algorithm:

1. Start with E' = {ig} where §;, = sign(BO), BO being the overall least squares
estimate.

2. Find 3 to minimize g(B) subject to GgB < t1.

3. While {3 |8;] > t}

4. Add 7 to the set £ where §; = sign(B). Find B8 to minimize 9(B)
subject to GgB < t1.

This procedure must always converge in a finite number of steps since one
element is added to the set E at each step, and there are a total of 2P elements.
The final iterate is a solution to the original problem since the Kuhn-Tucker
conditions are satisfied for the sets £ and S at convergence.

A modification of the above procedure removes elements from F in step 4
for which the equality constraint is not satisfied. This is more efficient but it is
not clear how to establish its convergence.
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The fact that the algorithm must stop after at most 27 iterations is of little
comfort if p is large. In practice we have found that the average number of
iterations required is in the range (.5p,.75p), and is therefore quite acceptable
for practical purposes.

A completely different algorithm for this problem was suggested by David
Gay. We write each f; as ﬁ;’ — fB;, where ﬁ;’ and 3; are non-negative. Then
we solve the least squares problem with the constraints ﬁ;’ >0, ﬁ]_ > 0, and
> ﬁ;’ + Z]' B; <t. In this way we transform the original problem (p variables,
2P constraints) to a new problem with more variables (2p) but fewer constraints
(2p 4+ 1). One can show that this new problem has the same solution as the
original one.

Standard quadratic programming techniques can be applied, with the con-
vergence assured in 2p + 1 steps. We have not extensively compared these two
algorithms, but in examples have found that the second algorithm is usually
(but not always) a little faster than the first algorithm.

7 Simulations

7.1 Outline

In the following examples, we compare the full least squares estimates to the
lasso, non-negative garotte, best subset selection, and ridge regression. We used
five-fold cross-validation to estimate the regularization parameter in each case.
For best subset selection, we used the “leaps” procedure in the S language, with
five-fold cross-validation to estimate the best subset size. This procedure is
described and studied in Breiman and Spector (1992). Breiman and Spector,
recommend five or ten-fold cross-validation for use in practice.

For completeness, here are the details of this procedure. The best subsets
of each size are first found for the original dataset: call these Sy, Sa,...S5,. (So
represents the null model; since § = 0 the fitted values are zero for this model).
Denote the full training set by 7', and the cross-validation training and test sets
by T'—T" and 7%, for v = 1,2,...5. For each cross-validation fold v, we find
the best subsets of each size for the data 7' —7": call these 57, S7,...S;. Let
PE”(J) be the prediction error when S% is applied to the test data T”, and
form the estimate

PE(J) = % > PEY(J) (12)

We find the J that minimizes PE(J) and our selected model is S;. Note that
this is not the same as estimating the prediction error of the fixed models
So, S1,...Sp and then choosing the one with smallest prediction error. This
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Table 3: Results for example 1

Method Median ME (stand. err.) Ave. # of zero coefs  Ave. s.
Least squares 2.79(.12) 0.0 -
Lasso (CV) 2.43(.14) 3.3 .63(.01)
Lasso (Stein) 2.07(.10) 2.6 .69(.02)
Lasso (GCV) 1.93(.09) 2.4 73(.01)
Garotte 2.29(.16) 3.9 -
Best Subset 2.44(.16) 4.8 -
Ridge 3.21(.12) 0.0 .

latter procedure is described in Zhang (1993) and Shao (1992), and can lead to
inconsistent model selection unless the cross-validation test set 7% grows at an
appropriate asymptotic rate.

7.2 Example 1

In this example we simulated 50 datasets consisting of 20 observations from the
model

y=p"x+0 ¢

where 8 = (3,1.5,0,0,2,0,0,0)7 and ¢ is standard normal. The correlation
between z; and z; was pli=il with p = .5. We set ¢ = 3, and this gave a signal
to noise ratio of approximately 5.7. Table 3 shows the mean squared errors over
200 simulations from this model. Lasso performs the best, followed by garotte
and ridge.

Estimation of the lasso parameter by generalized cross-validation seems to
perform best,a trend that we find is consistent through all of our examples.
Subset selection picks approximately the correct number of zero coefficients (5),
but suffers from too much variability as shown in the boxplots of Figure 8.

Table 4 shows the 5 most frequent models (non-zero coefficients) selected
by the lasso (with GCV): although the correct model (1,2,5) was chosen only
2.5% of the time, the selected model contained (1,2,5) 95.5% of the time. The
most frequent models selected by subset regression are shown in Table 5. The
correct model chosen more often (24% of the time), but subset selection can
also underfit: selected model contained (1,2,5) only 53.5% of the time.

7.3 Example 2

This is the same as example 1, but with 8; = .85 Vj and o = 3; the signal to
noise ratio was approximately 1.8. The results in the left side Table 6 show that
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Figure 8: Estimates for the 8 coefficients in example 1, excluding the intercept;
horizontal dotted lines indicate the true coefficients
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Table 4: Most frequent models selected by the lasso (GCV) in Example 1

Model Proportion
1245678 .055
123456 .050
1258 .045
1245 .045
13 others

125 (and 5 others) .025

Table 5: Most frequent models selected by all subsets regression in Example 1

Model Proportion

125 .240
15 .200
1 .095
1257 .040

ridge regression does the best by a good margin, with the lasso being the only
other method to outperform the full least squares estimate. The right side of
the table shows the results when the sample size is increased from 20 to 100.
As expected, the performance of most of the procedures improves. A notable
exception is the lasso with shrinkage parameter chosen by the Stein method: on
the average it shrinks by about 50% when no shrinkage is needed.

7.4 Example 3

Here we chose a setup that should be well-suited for subset selection. The model
is the same as example 1, but with 8 = (5,0,0,0,0,0,0,0), and ¢ = 2 so that
the signal to noise ratio was about 7.

The results in Table 7 show that the garotte and subset selection perform
the best, followed closely by the lasso. Ridge regression does poorly, and has
higher mean squared error than the full least squares estimates.

7.5 Example 4

In this example we examine the performance of the lasso in a bigger model.
We simulated 50 datasets each having 100 observations and 40 variables (note
that best subsets regression is generally considered impractical for p > 30).
We defined predictors x;; = z;; + 2z; where z;; and z; are independent standard
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Table 6: Results for example 2

22

N=20 N=100
Method Med ME (se.) Ave.# of zeroes  Ave. § | Med ME (se.) Ave.# of zeroes Ave. s
Least squares 6.50(.64) 0.0 - 79 (.06) 0.0 -
Lasso (CV) 5.30(.45) 3.0 .50( 03) 92 (.05) 0.1  .96(.01)
Lasso (Stein) 5.85(.36) 2.7 .55(.03) 4. 24 (.44) 1.6 .55(.01)
Lasso (GCV) 4.87(.35) 2.3 .69(.23) 86 (.06) 0.3 .97 (.01)
Garotte 7.40(.48) 4.3 - 96 (.07) 0.3 -
Subset 9.05(.78) 5.2 - 1. 03 (.08) 0.9 -
Ridge 2.30(.22) 0.0 : 72 (.04) 0.0 :
Table 7: Results for example 3

Method Median ME (stand. err.) Ave.# of zero coefs  Ave. §.

Least squares 2.89(.04) 0.0 -

Lasso (CV) 0.89(.01) 3.0 .50(.03)

Lasso (Stein) 1.26(.02) 2.6 .70(.01)

Lasso (GCV) 1.02(.02) 3.9 .63(.04)

Garotte 0.52(.01) 5.5 -

Subset 0.64(.02) 6.3 -

Ridge 3.53(.05) 0.0 -
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normal variates. This induced a pairwise correlation of 0.5 among the predictors.
The coefficient vector was 8 = (0,0,...0,2,2,...,2,0,0,...0,2,2,...2), there
being 10 repeats in each block. Finally we defined y = ﬁTx + 15 - € where ¢
was standard normal. This produced a signal to noise ratio of roughly 9. The
results in Table 77 show that the ridge regression performs the best, with the
lasso (GCV) a close second. 3

The average value of the lasso coefficients in each of the four blocks of ten
were .50(.06), .92(.07), 1.56(.08), and 2.33(.09). While the lasso only produced
14.4 zero coefficients on the average, the average value of § (.55) was close to

I

the true proportion of zeroes (.5).

8 The lasso for more general models

The lasso can be applied to a wide variety of models. Consider any model
indexed by a vector parameter 3, for which estimation is carried out by maxi-
mization of a function £(3); this may be a log-likelihood function or some other
measure of fit. To apply the lasso, we standardize the predictors appropriately
and then maximize £(3) under the constraint )" |5;| < t.

One could carry out this maximization by a general (non-quadratic) pro-
gramming procedure. Alternatively, consider here models for which a quadratic
approximation to £(3) leads to an IRLS (iteratively reweighted least squares)
procedure for computation of 3. These models include generalized linear mod-
els and other generalized regression models. Using the IRLS approach, we can
solve the constrained problem by iterative application of the lasso algorithm for
linear models, within an TRLS loop.

Specifically, in the terminology of generalized linear models we define the
linear predictor n = o + Z’l’ X;fB;, and maximize the log-likelihood under the
constraint ) |6;| < t. In this model we can no longer eliminate o by centering
the response y. If z and w are the adjusted dependent variable and weights
for the IRLS step, we center z via zf = z; — > zw;/ > w; and similarly for
X1, X5, ... Xp. Then we minimize S wi(z{ — ), z§;0;)* subject to 3 [6;] < t.
It is simple to modify the algorithms of section 6 to incorporate weights.

Convergence of this procedure is not assured in general, but in our limited
experience it has behaved quite well. Tibshirani (1994) applies this idea to the
proportional hazards model for survival data. Below we give a brief illustration
to logistic regression.

8.1 Logistic regression

For illustration we applied the lasso to the logistic regression model for binary
data. We used the kyphosis data, analyzed in Hastie & Tibshirani (1990),
chapter 10. The response is kyphosis (O=absent, 1=present); the predictors
z1=age, xs=number of vertebrae levels, and zz=starting vertebrae level. There
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are 83 observations. Since the predictor effects are known to be nonlinear,
we included squared terms in the model after centering each of the variables.
Finally, the columns of the data matrix were standardized.

The linear logistic fitted model is

—2.64 4 0.83z; + 0.77Txy — 2.2823 — 15527 4+ 0.0322 — 1.173

Backward stepwise deletion, based on Akaike’s information criterion, dropped
the 22 term and produced the model

—2.64 + 0.84x; + 0.80xy — 2.28x3 — 1.5427 — 1.1623
The lasso chose s = .33 giving the model

—1.5140.01z; + 0.3725 — 0.6123 — 0.3927

. - old || 2
Convergence, defined as the Bnew — BO H < 10e~%, was obtained in 5 itera-

tions.

9 Some further extensions

We are currently exploring two quite different applications of the lasso idea.
One application is to tree-based models, as reported in LeBlanc and Tibshirani
(1994). Rather than prune a large tree as in Breiman et.al’s (1984) CART
procedure, we use the lasso idea to shrink it. This involves a constrained least
squares operation much like the one in this paper, with the parameters being
the mean contrasts at each node. A further set of constraints is needed to ensure
that the shrunken model is a tree. Results reported in LeBlanc and Tibshirani
(1994) suggest that the shrinkage procedure gives more accurate trees than
pruning, while still producing interpretable subtrees.

A different application is to the Multivariate Adaptive Regression Spline
(MARS) proposal of Friedman (1991). MARS is an adaptive procedure that
builds a regression surface by sum of products of piecewise linear basis func-
tions of the individual regressors. MARS builds a model that typically includes
basis functions representing main effects and interactions of high order. Give
the adaptively chosen bases, the MARS fit is simply a linear regression onto
these bases. A backward stepwise procedure is then applied to eliminate less
important terms.

In ongoing work with Trevor Hastie, we are developing a special lasso-type
algorithm to dynamically grow and prune a MARS model. Hopefully this will
produce more accurate MARS models and ones that also are interpretable.

The lasso idea can also be applied to ill-posed problems, in which the predic-
tor matrix is not full rank. Chen and Donoho (1994) report some encouraging
results for the use of lasso-style constraints in the context of function estimation
via wavelets.
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10 Results on soft-thresholding

Consider the special case of an orthonormal design X7 X = I. Then the lasso
estimate has the form

By = sign(32)(185 1 — 1) (13)

This is called a “soft-threshold” estimator by Donoho & Johnstone (1994); they
apply this estimator to the coefficients of a wavelet transform of a function
measured with noise. They then back-transform to obtain a smooth estimate
of the function. Donoho and Johnstone prove many optimality results for soft-
threshold estimator, and then translate these results into optimality results for
function estimation.

Our interest here is not in function estimation but the coefficients themselves.
We give one of Donoho and Johnstone’s results here. It shows that asymptot-
ically the soft-threshold estimator (lasso) comes as close as subset selection to
the performance of an ideal subset selector— one that uses information about
the actual parameters.

Suppose '

yi =Bx' te
where ¢; ~ N(0,0?) and the design matrix is orthonormal. Then we can write
5]9 = ﬁj + oz; (14)
where z; ~ N(0,0?).
We consider estimation of B under squared error loss, with risk

R(3,B) = E||8 — BlI*.

Consider the family of diagonal linear projections
Top(B,6) = (6i8)j=1 8 €{0,1} (15)

This estimator either keeps or kills a parameter A]‘?, that is, it does subset

selection. Now we incur a risk of o2 if we use 39, and (2 if we use an estimate
of zero instead. Hence the ideal choice of §; is I(|8;| > o), that is, we keep only
those predictors whose true coefficient is larger than the noise level. Call the
risk of this estimator Rpp: of course this estimator cannot be constructed since
the §; are unknown. Hence Rpp is a lower bound on the risk we can hope to
attain.

Donoho and Johnstone prove that the hard threshold (subset selection) es-

timator Bj = Bf[(mﬂ > v) has risk

R(B,B) < (2logp+ 1)(¢” + Rpp) (16)
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Here 7y is chosen as o(2log n)lf“z, the choice giving smallest asymptotic risk.
They also show that the soft-threshold estimator (13) with v = o(2logn)'/?
achieves the same asymptotic rate.

These results lend some support to the potential utility of the lasso in linear
models. However the important differences between the various approaches tend
to occur for correlated predictors, and theoretical results such as those given here
seem to be more difficult to obtain in that case.

11 Discussion

In this paper we have proposed a new method (the “lasso”) for shrinkage and
selection for regression and generalized regression problems. The lasso doesn’t
focus on subsets, but rather defines a continuous shrinking operation that can
produce coefficients that are exactly zero. We have presented some evidence
in this paper suggests that the lasso is a worthy competitor to subset selection
and ridge regression. We examined the relative merits of the methods in three
different scenarios:

Small number of large effects: Subset selection does best here, lasso not quite
as well. Ridge does quite poorly.

Small to moderate number of moderate-sized effects: Lasso does best, followed
by ridge and then subset selection

Large number of small effects: Ridge does best by a good margin, followed by
lasso and then subset selection

Breiman’s garotte does a little better than lasso in the first scenario, and a
little worse in the second two scenarios. These results refer to prediction accu-
racy. Subset selection, lasso and garotte have the further advantage (vs ridge
regression) of producing interpretable submodels.

There are many other ways to carry out subset selection or regularization in
least squares regression. The literature is far too fast to attempt to summarize it
in this short space so we mention only a few recent developments Computational
advances have led to some interesting proposals, such as the Gibbs sampling
approach of George & McCulloch (1993). They set up a hierarchical Bayes
model and then use the Gibbs sampler to simulate a large collection of subset
models from the posterior distribution. This allows the data analyst to examine
the subset models with highest posterior probability, and can be carried out in
large problems.

Frank and Friedman (1993) discuss a generalization of ridge regression and
subset selection, through the addition of a penalty of the form )\Zj 18;]¢ to
the residual sum of squares. This is equivalent to a constraint of the form
Ej |8;]17 <t; they call this the “bridge”. The lasso corresponds to ¢ = 1. They
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suggest that joint estimation of the ;s and ¢ might be an effective strategy,
but do not report any results.

g=4 g=2 q=1 q=0.5 q=0.1

S5

Figure 9: Contours of constant value of E] |3;]7 for given values of q.

Figure 9 depicts the situation in 2 dimensions. Subset selection corresponds
to ¢ — 0. The value ¢ = 1 has advantage of being closer to subset selection than
ridge regression (¢ = 2), and is also the smallest value of ¢ giving a convex region.
Furthermore, the linear boundaries for ¢ = 1 are convenient for optimization.

The encouraging results reported here suggest that absolute value constraints
might prove to be useful in a wide variety of statistical estimation problems.
Further study is needed to investigate these possibilities.

Software
Public domain S/Splus language functions for the lasso are available at the
statlib archive at Carnegie-Mellon University. There are functions for linear
models, generalized linear models, and the proportional hazards model. To
obtain them, ftp to 1ib.stat.cmu.edu and retrieve the file S/lasso, or send
electronic mail to statlib@lib.stat.cmu.edu with the message send lasso
from S.
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