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NONPARAMETRIC DISCRIMINATION:
CONSISTENCY PROPERTIES

1. Introduction

The discrimination problem (two populatipsn case) may
be defined as follows: a random variahle Z, of observed
value z, is distributed over some space (say, p-dimensional)
either according to distribution F, or according to distri=-
bution G. The problem is to decide, on the bhasis of z,
which of the two distributions Z has.

The problem may be classified in varicus ways into
subproblems. One pertinent method of classification is
according to the amount of Informetion assumed to be
available about F and G, We may distinguish thres stages:

(1) F and G are completely known

(11) F and G are known except for the values of one
or more parameters

(11i) F and G are completely unknown, except possibly
for assumptions about existence of denslities, etc.

Subproblem (i) has been, in a sense, completely solved.
The solution is implicit in the Keyman-Pearson lemma [1]. and
was made explicit by Welch [2]. We may without loss of
generality assume the existence of density functibns, |8y
f and g, corresponding to F and G, since F and G are ab-

solutely centinuous with respect to F + G If f and g
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are known, the discrimination should depend only on _Q%E%__ "
glz

An aprropriate (positive) constant ¢ is chosen, and the

following rule is observed:

I1f g g > ¢, we decide in favor of F

if . ¢ ¢, we decide in favor of G

(2]

= ¢y the decision may be made in an arbitrary
manner

g
f
If g

2] [

These procedures are known to have optimum properties with
regard to control of probability of mlsclassification (prob=
ability of wrong decision). We shall refer to this as the
Mikelihood ratio procedure,® and denote it by L(c).

For simplicity, we shall assume throughout the pavper
that the borderline case f(z) = cg(z) can be neglected.
Formally, we nostula*e that

P{ £¢2) = cg(2)} = 0
regaréless of whether Z comes from F or Ge Since the
classification is arbitrary when f(2) = cg(z), it hardly
seems worth while to introduce complications into the methods
to allow for it. However, it is not difficult to extend
our metheds to take care of the situation which arises when
P{ £(Z2) = cg(z)}} > O.

The choice of ¢ depends on considerations relating
to the relative imnortance of the two possible errors:
saying Z is distributed according to G when in fact it

i3 distributed according to F, and conversely. Two choices

of ¢ have been widely advocated:
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{(a) Take ¢ = 1

(b) Choose ¢ so that the two probabilities of error
are equal,

Choice (a) has been called "logical"™y choice (b) yields
the minimax procedure, In this paper we shzll not concern
ourselves with the choice of ¢, but shall assume that a
given positive ¢ 1is a datum of the problem.

The usual approach to subproblem (ii) is as follows.

We assume there are available samples from the two dlstributions,

say

..

Xl. XQ, soay xm sample from F

sample from G.

Y10 o1 cees Y

We assume further that F and G are known in form: that is,
that we know them except for the values of some real parameters,
which may be denoted collectively by ©. We may denote the
distridutions corresponding to a given @ by Fg, Gg. The
procedure currently employed is to use the X's and ¥'s
to estimate @, by, say, 6, and then to proceed a&s under (i),
using the distributions F@’ G@ as though they were known to
be correct.

The most familiar example of this process is the linaar
discriminant funetlion [3]. There, it is (taecitly) assumed
that F and G are p-variate normal distributions having the same
(unknown) covariance matrix , and unknown expectation vectorse
The two expectation vectors and the covariance matrix are
estimated from the samples, and the lixelihood ratio »ro-

cedure is then employed, using the estimated valuesg as

——
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though they were known to be correct.

Not much is known about the desirability of the usual
method of attack on (ii)e. We give in 8ection 3 a theorem
concerning asymptotic properties of the method. Undoubtedly, !
this procedure is reasonable provided the assumed para=
metric form is correct. But the validity of the use of
the linear discriminant function with data obviously not
normal or, if normal, with obviously unequal covarlance
matrices has been of general concern. Presumably, very
bad results may ensue if a procedure is used, based on
certalin assumptions about parametric form, when those agsump=

tions esre not even approximately correct.

There seems to ba a need for discrimination procedures
whose validity does not require the amount of knowledge
implied by the normality assumptlon, the homoscedastic
assumption, or any assumptlon of parametric form. The
present paper is, as far as the suthors are aware, the
first one to attack subproblem {(1i1): can reasonable discfimin-
ation procedures be found which will vork even 1f no
parametric form can be assumed? -
It is not to be expected that any procedure cén be
guaranteed to give good results without any restriction
whatsoever on the distributions F and G. To clarify this
poinf, ve need to state a precise meaning for "good results.”
This is done in Section 2, with the introduction of the concept

of "consistency." We then proceed in Section 4 to prove,

under weak restrictions onthe densities f and g, the consis- i
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tency of a class of nonparametric procedures there proposed.

A modification of these procedures is then considered in
Section 5.

It may be noted that all of the methods and results
of this paper can be extended without difficulty to the
situation in which there are more than two populations to
be discriminated.

the authoré are eﬁgaged in further work along the
1ines here laid down., Specifically, some sampling experie
ments are being conducted, intended to throw scme light
on the performance of the procedures for mcderate sample
sizes} and asymptotic properties of a class of segquential
nonparametric discriminatory procedures is being investigated,
It is intended to prepare further reports setting forth the
results.

2. The notion of conslistency.

Tn setting out to define an optimum property in sta-
tistical inference, it is useful to have in mind the limit
6f excellence beyond which it is not possible to go. The
procedures L(c) described in Section 1 provide such a limit
in the case of nonparametric discrimination: we cannot, with
any nonparametric classification procedure, expect to do

better than the best which is possible when the densitles
themselves are assumed to be known. This fact is in~

tultively obvious, but if desired an exact proof 1s easily
given. When f and g are known, Z 1s sufficient for the

classification, with respect to (Z; XysXnsoeesXp3¥1s¥0scens Yn)»
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- and we may (by using randomization) exactly duplicate (with

a procedure based on Z) the per “ormance characteristic of
any nrocedure based on (z;xl.xz.....xm; Yl’Y2’°"’Yn)'
Thus, no nonparametric procedure can have orobabilities
of error léss than those of a likelihood ratio vrocedure. On
the other hand, we shall prorose in Sections 4 and 5 classes
of (sequences of) nonparaqetric vrocedures which, in the limit
as m and n tend to infinity, have the same probabilities of
error as the procedures L(c). We may therefore reasonably .

say that our procedures are consisten’ with the likelihood

ratioc precedures.
There are two differert notlons of consistency for
sequences of statistical decision functions, and it may ha
worth while to distinguish them. Sunvose that the decision
space is finite (as 1s the case in discriminatory analysis
when there are finitely many povvlations)., Let the possible
decisions be dencted by d&, G;,..o, cf; « Now suppose we
are considerling two sequences of decision functions, say
{élﬁ} and {éig}. How should we define the notion that
these two sequences tend to a; ree with each other, or be - -
consistent with each other, as n ~» o0? On the one hand,

we might recuire that in the 1imit there should be closze
agreement between the probabilities of decision; on the other

hand we might requlre that in the limit there be high proba-
bility of agesement of descision. The former requirement re-

lates to the performance charscteristics of the decision

functicns; the latter requirement relates to the decision

i
5 |
!
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functions themselves. We have then two definitions:

Definition l. We shall say that the sequences {él;] and

n
{ZSn} are consistent in the sense of performance charascteristics

if, whatever be the true distributions, and whatever be € > 0,

there exists a number N such that whenever m > N and n > N,

t "
P{&mz -Si}-P{An% Si} < £

for every decision Si'

Definition 2, We shall say that the sequences {43;} and

{él:} are consistent in the sense of decision functions if,

whatever be the true distributions, and whatever be ¢ > 0, there

exists a number N such that whenever m > N and n > N,
1 n
P{Am = An} > l s £,

We observe that consistency in the second sense implies that

in the first, since P(Ai;;é A;) 13 not less than each of the

quantities }?(A;!1 = Si and A;# Si) 2 P(Az;1 = Si) -P(A; = Si).

The definitions are not equivalent however, as the following
trivial example shows., If A' and ASH each denotes (for
any msn) the process of c¢hoosing between two alternatives

Sl and 82 by tossing a cein, then P(AS' = £§") = % ’

while

‘g
>
i
(=%
il
av]
P
it
o
it
o=

for 1 =1, 2.
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Tnasmuci £ Lt is customary to evaluate decision functions

solely in terms of their pérformance characteristics, Defli-

nition 1 1s the more natural. Howsver all proofs of consistency

given in this paper provide consistency in the sironger sense

of the second definition, and consequently we shall adopt 1t.
Since our procedures are based on two samples, we must

consider a double limit process as both m and n tend to

infinity. To savoid difficulties which would otherwise arise

in Section 5, we shall assume throughout that m and n ap-

proach infinity at the sems speed. Preclsely, we assume %

and % are both bounded away from O &s n,m - oc0. When-

sver we write M™myn-—>co™ this restriction should be under-
stood. Our restriction has the effect of reducing the limlting
process from a double to & single one.

In the sequel we shall be compering certain discriminatory
procedures with procedures of the type L(c). It is convenient

to Introduce-

Definition 3. A sequence {tlm ]  of discrlminatory pro=
e g

cedures, based on Z and on ssamples Xy, Xpsttt, Xy from F

and Yl’ YZ.'ta, Yn from G, 13 sald to be consistent with

L(e) if, whatever be the distributions F and G, regard-
less of whether Z 1is disirlbuted according to F or accord-

ing to G, and whatever be ¢ > 0, we can assure

P{lim , &nd L(c) yield the same classification of 2} > 1 =€

2

— 2
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provided only that m &and n eare sufficlently large.

We may also define a corresponding notion of uniform con-
sistency., If, in Deflnition 3, the bound on probability of
agreement can bs assured for all F and G with a single

size specification on m and n, we say that {éﬁm } is

201
uniformly conaistent with L(e).
3. Conalstency for the parametric case.

We shall now demonstrate that the analogy of the notioﬁ
of consistency just introduced with the like-named notion iq
point estimation, is more than formal. C(Consider the problem
of parametric discrimination (subproblem (ii))of-Ssction 1.

We shall from time to time have occasion to consider
probabilities computed under the assumption that 2 1s distri=-
buted according to F, or sccording to &G. It is convenient

to let P1 and P2 denote probabllities computed under thess

reapactive assumptions,

Let 3 and g be classes of densitles parametrized by
parameters denoted collectively by ©., Let there be & notion
of convergence introduced in the space @& of parameter values,

Suppose there is given a sequence {8 of eatimates for 6,

m,n}

MmNl n*

Theorem 1. If

() the estimates {8

m.n} are conslistent,

(o) for every 9, fg(z) and gg(z) ‘are continuous

functions of @ [for every -z eXxcept perhaps for 1z ¢ Zg» where
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Pi(zg) =0, 1 =1, 2, then the sequence of dlscrimlination pro-

cedures {'i.m,n(c)} obtained by applying the likelihood ratio

principle with eritical value ¢ > 0 1o f§ (z) and g3 (z)
- gm.'l gm’n

is consistent with L(c).

Proof. The idea of the proof is very simple: Since am.n

is consistent, am’n wlll probebly be near © if m and n
are large. But since fg and gg are continuous, this means

[s)
a,n will probably be near fg, and cgj will

mynk
probably be near cgg. Therefore, it is not likely to make much

difference whether we compare fg and cgy Or fa and
nmsn

Fix ¢ >0, €e>0,and @e®. Find § > 0 so small that
P {lf (Z) ~cg (2)] £ 8} < 1 e, 1 =1, 2. (This is possible
1'% ¢ 28 L=l
since Py{[fy(2) - cgg(z)l S u} is the cumulative functlion of
the random variable |[fg{(Z) - cgg(Z)]| and hence 1s contlnuous

on the right, and by assumption takes on the value O when

u = 0)., We now assume that =z does not lie 1n Zg» thus ex-
cluding an event of zero probability. Since fg(z) is a
continuous function of & for all 2z, we can agsocliate with

every 2z a gquantity 7?1(2) > 0 such that

lfa(z) - fg(z)l < g whenever 1§ - 8} < 71(3).

A lilke function 72(z) arises if f 1is replaced by cg. Let

-
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Y (2) = min { 71(2)' 72(2)} and find % > 0 such that

P9 (z) <y)<ie 1=1,2

"sing finally the consistency of the estimates, choose M
end N large enough so that whenever m > M and n > N,

a 1 nent
P{Iem’n - el =n}< i ¢, Combining the above, a disagreemen
between L{c) and im n(9) will arise with probability less

H)

than €.
Remarks. (1) The dependence of the discontinuity sets

Zg on © 1is important. Wsre we to demand the stronger property
that f,(z) and gg(z) be continuous in @ for all z ¢ Z»
Z & fixed set, Py(2) =0, 1 =1, 2, we should exclude many
cages which are included under the theorem as glvern.

(2) Two notions of convergence in & are involved: that
with respect to which the estimates are conslstent, and that with
respect to wiich the densitles are continuous. These nsed not be

the same, provlided the former 1mplies the latter,
(3) If uniformity is added to the hypotheses of theorem

1, it may also be added to the conclusions. Specifically, if

the estimates ﬁm,n are uniformly consistent, if the densities

f and g are uniformlj continuous functions of &, uniformly
in z, and if the & of the proof of theorem 1 may be fixed
independently of @, then that proof goes through for all €
using the same value of ¢. We can then concluds the uniform
consistency of {im,n(c)}.
s Nonparametric discrimination and its consistency.

Let us next consider the discrimination problem of the

11
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third kind delineated in Section 1. We admit the possibility

that the denmsities f for X and g for Y may be any in
certain classes 7 and 3 of densities which are too large
to be characterized by a finite number of parameters. Thus,
55 ard & mey consist of ell uniformly continuous densities,
or of all contiruous censities, or of all densities contlnuous
save at most at countably many points., Can we nave any aia=-
crimination pracesdures which are reasconeble to use when 80
1ittle 1s assumed azbout the populations being discriminated?
kecall that, once ¢ has been selected and. 4 has been-ob-
ssrved to have the value 2z, the only information naeded'tb
carry out the procedurs L{c) are the two real numbers f(z)

and g{z). In the procedure %m,n(c)’ we employed the estimate

for & a8 a means of obtaining eatimates for rg(z) and gg(z;.

In the nonparametric cass there.is no @ to be estimated, but
we may Instead proceed to estimate the numpers f(z) and ‘g(z)
trectly. Once estimates have been obtained, we may apply the

procedure L{c), using these estimates instead of £f{z) &and
g(z). We shall designate such procedures by L*(c, T, %), where
? and g are the estimates for f and g.

Bafore considering the problem of estimating the densitiec,
let uc note the properties which such estimates should have if
we are to be sable to prove the consistency of L¥(c, ?, %) wlth
L(c}s

A

Theorem 2. If ?m’n(z; and 3m,n(2} are consistent esti-

mates Tor f{z) and g(z) for all =z except possibly =z ¢ zf,g
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% A
where Pi(zf.g) =0, 1 =1, 2, then {Lm.n(c’ £, 2)} 48 con

sistent with L{c).
The proof follows lines similar to that of theorem 1, and

will be omitted. k4
OQur problem is now to find conslstent estimates for f(z)

and g(z). We shall for brevity consider f(z) only, as analo~
gous remarks apply to g(z)e. We fix 2z, since the argumant is
the same for each value. Oér basic idea is this: the proportion
of the m X's which fall in & stated (small) neighborhood of =z
may be used to estimate the X=-probability in that neighborhood.
The ratio of this estimated probability to the measure of the
neighborhood i1s then an estimate of the average value of f(x)
near 2z. This 1s in turn an estimate of f(z) itself 1f we

make some assurmption about the smoothness of f. To obtaln
consistency, we may let the neighborhood shrink down to 2z as

m-—¥ 00, so that the average of f(x) over the neighborhood

will approach f£(z); but we will take care to have the neighborhood

shrink slowly enough so that the proportion of the X's therein

will have a positive expectation, This will assure that the pro-

portion of X's in the nelighborhood is a consistent estimate of

the probability,
It is obvious that we cannot hope to estimate f(z} from

Xl, XZ

otherwise we could alter f{z) arbitrarily without in any way

s e, Xm unless some continuity assumption is mede. For,

changlng the dlstribution of X;, X5,*** , and thus without chang-
ing the distribution of any sequence of estimates based on

Xll le ree o

13
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Now let K denote Lebesgue moasure in our (p-dimensional)

sample space, and let |x - y| denote the (Euclidean) distance
between points x and y of this space.

Lemma 3, Jf f£{(x) 1s continuous at x = z, and if {élm}

is a sequence of sets such that

3
3]
¢
IPh
It

L]

lim g1y
T de

3P

and lim m.u(O_) =~ o, and if M is the number of X, ,X,j,°**,
-—'m—+oo o m 1 ‘2 xm

M
¥hich lie in [}m, then {E;ZTEY;T} 1s a consistent estimate for

£(z).
P(A_}

m

yz (Am)
f(z) >0, m P(Am)—a ©. Since /c(Am}——-a» 0, P(Am)-*) 0

Proof, Observs that ~y f(2) a8 m-— oo, If

and we conclude L yle Combining ¥ —_— f{z)

mp(A_) P mpe (D) P

ap (b)) " wiB,)

as was to be shown. If fr(z) = 0, EI(

and the Markoff lemma completes the proof,

We have in lemma 3 a class of estimates, any of which, by
virtue of theorem 2, will provide consistent discrimination of
any (nonparametric) classes g and a4 whose members are continu-

ous {except poussibly for a set of values of zero msasure).

S. Alternative procedures.

While the procedures L¥(c, ——dr X ) of the last
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Section provide consistent discrimination, the question of their

applicabllity whemn m and n are not large remains open. (Like
criticiam may of course be applied to any asymptotlic theorem.) ﬂ
We shall In the present section suggest some alternative esti-
mates for f(z) and g(z), which seem on intuitive grounds more
likely to glve good results than the estimetes proposed before.
The former estimates are the natural ones when thinking of the
simpliclty of consistency proofs, but need not be desirable in

practice,

The main precticel difficulty in using the former estimates
lies in the cholce of the regions {Zlm}, (and the corresponding

reglons for g, say {/\h}). If these regions are made too

small, the numbers M and N of sample points falling into them

will be too small, so that the proportions % and g will not

be sccurate estimates for the corresponding probabilities

Pl(llm). PZ(J\n). On the other hand, if the regions are made

too large, these probabilitles will not be good approximstions

for f(z}/L(éim) and g(z)/L(an). We are between twin perils

and must steer a middle course. We might, for example, decide

the smallest values of M and N we could tolerate, and choose

z}m and /L just bilg enough to include the chosen numbsr of
n

points. But to do so alters the probablllstic properties; now
M and N are fixed and A and YA are random. Are the results
of lemma 3 =still validz

Even if they are we may still be In difficultlies, It may

happen that near 2z there are numerous X's, but few ¥'s; but

15
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by going a little further we find the situation reversed. The
indicstion is clearly for ’H‘l, but if we take separate A and
/\. the estimated f and g may be close. Toc avold this
difficulty the following idea is suggssted: Choose a nunber Kk,
and take in the neighborhood of z a single region, Am’n,
containing a total of k polnts of éither sample. Intuitively
this procedure seems sound, -but since _m + N =k we have intro-
duced dependence of our estimates and further altered the proba-
vilistic properties. The question which now arlises is whether
or not estimates for f(z) and g(z) based on M and N,

when so determined, are still consistent,

As a first step in snswering these questions, observe that
we may by means of & preliminary transformation reduce our space
from p dimensions to one. Let (D(x,y) denote a non-negative

roal valued function of pairs (x,y) of points in the sample
space. Suppose lo is so constructed that when X ,— x,

|° (xn, x)——>» 0, and suppose further that for each 2z, except

perhaps for =z € zf.g where Pi(Zf'g)r = Oy i =1, 2, F(X:Z)
and £ (Y,z) eare random varlables possessing densities, say
fz(x) and gz(x), continuous and not both 0 at 0. (These
properties are satisfied, for example, by p (x,y) =\pfi;—y—|-).
We now replace the problem of deciding whether £(z) or cg(z)
is the larger, by the problem of deciding whether f£,(0) or

cgz(O) is larger; and further replace the samples X;,Xys***,X,
and Yy,¥pseee,¥y by P (Xpez)s p(Xpez)sttt, £(Xy,2) and

(-D(Y]_.z), F(Yz.z);"'. (O(Yn,z), respectively. We may now, with-

T

axen——
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out real loss of generality, assume that £ and g are densi-

ties of non-negative univariate random varisbles, and that z = 0,

Theorem ,, Let X =and Y be non-negative. Let f and

g be positive and continuous at 0. Let k(m,n) be a positive=

integer-valued function such that k{m,n)—sp oo, % k(msn)—~—>r 0,

and % k(myn;~—>» 0, as m and n-—)oo. (This tsendency being

restricted so that %- is bounded away from 0 and o). Define

U = kB smallest value of combined samples of X's and Y's,

{ <

M = number of X's =10,

N = number of Y's = 7.

Then ﬁ% 1s a consistent estimate for (0} and 2% is a con-
==L Ly 2. a.con

sistent estimate for g(0).

Proof.’ Fix € > 0 and 8 > 0., Define kl(m,n) and

kl(msn) mf{0) !
ik, (myn) " ng{0)

ka{m,n} by kl(m.n) + kz{m,n} = k{m,n) and

kl(m,n)

kl(m'n) 1Y
mf(0) (1= §)2

nf (0) (1+ §)°

and w{m,n)

Define v{m,n) =

ks (m,n)

k (m’n)
2 and w(m,n) = .
ng(0)(1+ § )¢ ng{0) (1= $)2

Obzerve v(m,n) =

Define

M;,n = number of X's < v(m,n),

number of X's < w{m,n) ,

%

1

N = number of Y¥Y's < v{m,n),
N

17
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o
Nm,n = nuwber of Y's < w(m.n).

Using the continuity and posltiveness of £ and g &t O, find
q> 0 so0 small that when O Sx3q ‘%%%% - 1‘ <$ and

|§%%% - 1‘ < S o« Find my, Iy such that when m > m4 and

n > Ny w{msn) < q, and make these reatrictions. Observe

vi{m,n}

v
) = m £(x)dx and hencs

E(lﬁ:m,L

2£(0) vimyn)(1-8) < BOL ) < af(0) vimm) (43

Similarly observe
nf(0) w(mem) (1~ 8 ) < BOHy, 5) < =f(0) wlmpa) (14 3)

ng(0) v(m,m)(l=§) < B(NS ) < ng(0) v(mmn)(1+3)

ng(0) wimym) (1= ) < E(NL ) < ng(0) wlaya) (1+ %)

kl(m,n) kl(m,n)

Thus, BT ) <77 T W B e
K, (m,n) k, (m,n)
REE e SR L R

The random variables involved are binonials, wheae expectations
tend to oo, bub more slowly than the numbers of trials, as

myn —» O . Therefore, if we take mpe N large enough, We

Ccan s8ssurs

P(x;’n < kl(m,n)) > 1 =€
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P(N;'n < k2{m,n]) >1 = ¢
P(I-![:;’n > kl(m,n)) >1 e

P(N;,n > ka(m,n)) >1 =~ ¢

as scon &8 m > m, and n > Ny which restrictlon we now make.

Combining, using the fact that U will exceed v(m,n) if

v v
Mp,n + Np,n < k(m,n), we have
P(U > v(m,n)):- 1 - 2¢,
P(U < w(m,n)) >1 - 2¢.

The event U > v{msn) impllies the event that all X's < v(m,n)

are among the first k X's and Y's and hence the event

i Lg“n S M. Therefore, P(M;,n p M) 2 P(U > v(m,n)) > 1 - 2¢.
Similarly, P(M;,n 2 ¥) > 1 - 2e., Restricting m > m3s B > ng,

6 can further agsure
v 2
P(”m,n > mf{0) v(m,n)(l~ §) )> 1 -¢,
P(M;’n < mf'(o) w(m,n)(1+8)2)> 1 - ¢,

ﬁ Combining,
P(g- < £(0) wim,n)(1+ 8)2) > 1 - 3¢,

?(2 > £(0) v(mm) (2 %) > 1 - 3e.

Hence P{f(O) . :2:2 (1= 8)2 < n%": £{o) - %%?3‘ (1*'3)2} > 1 = 10€,
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v(myn) _ (1-8)° o |
wim:n) (l+‘3)2 » the concluslon ~E;> £(0) 1s at hand.

Slince

A similar argument shows %%'”59 g(0).

A situation in which one of the densities is O at 0 can
be dealt with by a corrsesponding but simpler argument which we
omit. The effect of theorem L is to assure us of satlsfactory

large sampie results if we employ procedures of the following

" kind:

Cchooss X, a posltive integer which is large but small come
pared to the sample sizes.h Specify a metric in the sample space,
for example ordinary Euclidean distance. Pool the two samples
and find, of the k values in ths pooled samples which are nsar-
est to =z, the number M which are X's. Let N = k=M be the
number which are Y's. Proceed with the likelihood ratio dis-

erimination, using however % in place of f{z) and g in

place of g{z). That is, assign Z to F if and only if

BiI=
A
o

sl

A et

5oy ST i
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