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Approximating D iscrete Probability D istributions 
w ith Dependence Trees 

C.I<. CHOW, SEXIOR MEMBER,  IEEE, AND C. N.LIU,MEMBER, IEEE 

Absfracf-A method is presented to approximate optimally an 
n-dimensional discrete probability distribution by a product of 
second-order distributions, or the distribution of the first-order 
tree dependence.-The problem is to find an optimum set of n - 1 
first order dependence relationship among the n variables. It is 
shown that the procedure derived in this paper yields an approxima- 
tion of a minimum difference in information. It is further shown that 
when this procedure is applied to empirical observations from an 
unknown distribution of tree dependence, the procedure is the 
maximum-likelihood estimate of the distribution. 

I. INTRODUCTION 

II 

N DESIGNING many information systems, such as 
communication, pattern-recognition, and learning 
systems, a central problem is to estimate the under- 

lying *dimensional probability distributions from a finite 
number of samples and to store the distributions in a 
certain limited amount of machine memory. Limitations 
on allowable equipment complexity and available samples 
often require the distributions to be approximated by the 
use of some simplifying assumptions, such as the statistical 
independence or the normality of the random variables 
under consideration. The performance of these systems is, 
to a very great extent, determined by the approximations 
employed. The aim of this paper is to apply a notion of’ 
tree dependence to approximate probability distributions. 
The present concern is with n-dimensional discrete dis- 
tribu‘tions. 

Lewis”’ and Brownf2’ considered the problem of ap- 
proximating an &h-order binary distribution by a product 
of several of its component distributions of lower order. 
Lewis showed that the product approximation, under 
suitably restricted conditions, has the property of mini- 
mum information.[” However, the problem of selecting 
a set of component distributions of a given complejrity 
to compose the best approximation remains unsolved. 
A method is developed in this paper to best approximate 
an nth-order distribution by a product of n - 1 second- 
order component distributions. 

In many applications, the probability distribution func- 
tion is not explicitly given, and it is usually necessary to 
construct a distribution function from the samples. The 
optimum approximation procedure is extended to em- 
pirical observations. It is shown that our procedure 

Manuscript received May 12, 1967; revised November 8, 1967. 
A preliminary version of this paper was presented at the First, 
Annual Princeton Conference on Information Sciences and Systems, 
Princeton, N. J., March 1967. An abstract appeared in the Pro- 
ceedings of the Conference. 

The authors are with the Thomas J. Watson Research Center, 
IBM Corporation, Yorktown Heights, N. Y. 10598 

maximizes the likelihood function, and, therefore, it is a 
maximum-likelihood estimator of the distribution of tree 
dependence, 

II. A CLASS OF PRODUCT APPROXIMATIONS 

Let P(x) be a joint probability distribution of n dis- 
crete variables x1, xZ, . *. , x,, x denoting the n vector 
(x 1, x2, * * * , x,). A product approximation of P(x) is 
defined to be a product of several of its component dis- 
tributions of lower order in such a way that the product is 
a probability extension of these distributions of lower 
order. [I1 Any product approximation, by definition, is itself 
a valid probability distribution. 

We shall consider the class of product approximations 
in which only the second-order distributions are used. 
There are n(n - 1)/2 second-order approximations, of 
which at most n - 1 can be used in the product approxi- 
mant. In other words, the probability distributions that 
are permissible as approximations are of the following 
formC3’ : 

, 

‘t(‘) = IJ ‘(‘WLi 1 xWLjCil>, 0 I j(i) < i (1) 

where (m,, .. . , m,) is an unknown permutation of 
integers 1, 2, . . . , n, and P(x, 1 x,) is by definition equal 
to P(x,). Each variable in the above expansion may be 
conditioned upon at most one of the variables. A proba- 
bility distribution that can be represented as in (1) is called 
a probability distribution of first-order tree dependence. 
The pair consisting of the set x = {xi 1 i = 1, 2, . . . , n) 
and the mapping j(i) with 0 5 j(i) < i is called the 
dependence tree of the distribution. 

The following discussions are confined mainly to the 
first-order dependence; hence, the adjective “first-order” 
will be omitted whenever tolerable. For simplicity, in the 
following sections we will represent (m,, m,, . . . , m,), 
the permutation of integers 1,2, * * * , n, by the subscripts 
only; for example, xmi would be represented by xi. 

To depict the dependence relations graphically, the 
variable Xi will be represented by a point on the plane, 
and if xI and x, are two variables such that m  = j(Z), 
they will be joined by a line with an arrowhead pointing 
from xz to x,. Whenever j(Z) = 0, xz will not have a line 
pointing away from x1. If j(i) = 0 for exactly one variable, 
then the dependence tree is connected and has n - 1 
branches; hence, it is a tree in the graph-theoretical sense. 
Otherwise, the dependence tree is a subgraph of a tree. 
Fig. 1 shows an example of a dependence tree. 
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P~xl=P(x,,P~x,1x,~Pcx3Jxz~P~x4Jx,~P(x,Ix*~P~x~lx~~ 

Fig. 1. Example of a dependence tree. 

III. OPTIMUM APPROXIMATIONS 

A probability distribution, like any other function, 
can be approximated by a number of different procedures. 
In this paper, we consider the problem of best approxi- 
mating an nth-order distribution by a product of n - 1 
second-order distributions. It is of considerable impor- 
tance, both for theory as well as for practical application, 
to accomplish as much as possible with distributions of a 
fixed and low order. It goes without saying that in order 
to achieve increasing accuracy in the approximations, 
the approximants will, in general, have to be of increasingly 
high order. 

In order to discuss the goodness of approximation, the 
notion of closeness of approximation must be first defined. 
Let P(x) and P,(x) be two probability distributions of 
n discrete variables x = (x1, zZ, . ’ ’ , x,). It is well known”’ 
t.hw.t the quant,it! 

I(P, P”) = c P(x) log p& 
x 0 

has the property that 

I(P, P”) 2 0 (3) 

with equality sign if and only if P(x) = Pa(x) for all x. 
Lewis”’ defined I(P, P,) as the measure of closeness in 
approximating P by P, on the basis that I(P, P,) can 
be interpreted as the difference of the information con- 
.tained in P(x) and that contained in P,(x) about P(x). 
The measure is always positive if two distributions are 
different, and is zero if they are identical. Lewis further 
found that the closeness measure is particularly simple 
-when applied to product expansions, and used the measure 
for comparison of two or more proposed approximations. 

The measure defined in (2) will be used as a criterion 
:in developing a procedure of approximating an nth- 
order distribution by a distribution of tree dependence. 
,The problem can be stated as follows. 

A Minimization Problem 
Given an nth-order probability distribution P(xl, x2, 

. . . x,), xi being discrete, we wish to find a distribution 
of trke dependence P7(x,, x2, * ’ . , z,,) such that I(P, P,) 5 
I(P, P,) for all t E T, where T,, is the set of all possible 
first-order dependence trees. The solution T is called the 
.optimal first-order dependence tree. 

Since there are n,n-2 trees with n vertices,“’ the number 

of dependence trees in T, for any moderate value of n 
is so enormous as to exclude any approach of exhaustive 
search. To describe our solution to this optimization 
problem, we shall make the following definitions. 

Definition 1’ : The mutual information I(xi, xi) bet,ween 
two variables xi and Xj is given by 

This is the usual definition of mutual information. It is 
well known that I(xi, zj) is non-negative. 

In the graphical representation of dependence relations, 
to every branch of the dependence tree we assign a 
branch weight 1(x<, x~(~,). Given a dependence tree t, 
the sum of all branch weights is a useful quantity. 

Definition 9: A maximum-weight dependence tree is a 
dependence tree t such that for all t’ in T, 

The first result can nom be stated as follows. 
A probability distribution of tree dependence P,(x) 

is an optimum approximation to P(x) if and only if its 
dependence tree t has maximum weight. 

To show this, we have from (2) 

I(P, PJ = - c P(x) 2 log I’(& / q;,) 
x I=1 

+ c P(x) log P(x) x 

- c P(x) 2 log P(z,) x i=l 
+ c P(x) log Z’(x). (4) x 

Since P(x() and P(z<, Xi(<)) are components of P(x), 

- F P(x) log P(xJ = - c P&i) log P(X%) z, 
which is denoted by H(xi) and 

= I(Xi, Xj(i,). 

Thus, (4) becomes 

I(p, f’t) = - 2 Ib,, x,(s)) + 2 W(x,) - H(x). ,=I 1=1 
Since H(x) and H(z,) for all i are independent of the 
dependence tree and I(P, P,) is non-negative, minimizing 
the closeness measure I(P, P t) is equivalent to maximizing 
the total branch weight 
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Read samplea Ix, x2 . . . YN) 

By virtue of this result, our minimization problem can 
be solved without exhaustively considering all possible 
expansions. Furthermore, the solution is achieved without 
requiring any knowledge of t,he actual distributions of 
higher order other than what is necessary to evaluate 
the mutual information between pairs of variables. The 
second-order component distributions suffice for this 
purpose. 

A direct solution is possible because the problem of 
finding the optimal first-order dependence tree is trans- 
formed to that of maximizing the total branch weight of 
a dependence tree. Since the branch weights are additive, 
the maximum-weight dependence tree can thus be con- 
structed branch by branch. A procedure to best approxi- 
mate an nth-order distribution by a second-order product 
expansion is described in Section IV. 

IV. AN OPTIMIZATION PROCEDURE 

We shall make use of the result proved in Section III 
to define an optimization procedure. Our problem is to 
construct a dependence tree of maximum weight. We 
can use a simple algorithm developed by Kruskal for 
the construction of trees of minimum total length.‘4’ 
To choose a tree of maximum total branch weight, we 
first index the n(n - 1)/2 branches according to de- 
creasing weights, so that the weight of bi is greater than 
or equal to the weight of bi whenever i < j. We then 
start by selecting b, and b,, and add b, if b, does not form 
a cycle with b, and b,. In general, we continue to consider 
branches of successively higher indices, selecting a branch 
whenever it does not form a cycle with the set previously 
selected, and rejecting it otherwise. This procedure pro- 
duces a unique solution if the branch weights are all 
different. If several weights are equal, multiple solutions 
are possible; however, these solutions all have the same 
maximum weight. 

In order to provide a more detailed description of this 
procedure, we call attention to the flow diagram describing 
the computational algorithm in Fig. 2. In this figure, 
the input to the program is a set of samples from the 
distribution that is being approximated. On the basis of 
these samples, all n(n - 1)/2 pairwise mutual informa- 
tion measures 1(5;, xi), i = 1, 2, 3, . . . , 72 - 1, j = 
2, 3, * * . ) n, and i < j are first computed. If P(x) is 
explicitly given, then 1(x<, xi) are directly evaluated, and 
no sample is needed. The successive steps in selecting 
the branches are obvious from the flow diagram. When 
all branches are determined, P,(x) can be readily formed. 

To understand the approximation method described in 
this section better, let us consider a simple example. In 
this example, it is desired to find the optimum tree ap- 
proximation of a fourth-order binary distribution. 

Example: Consider the probability distribution listed in 
Table I. For each pair of variables (xi, xi), we calculate 
the mutual information 1(x,, xi). These quantities are 

Throughout this program let the range of t be i =  1,2.. . . , N-l and let 
the rarrge of J be j.- 2.3.. , N, i <  ,. 
k- 1. 

Set NODEi = i for initialtmtian 

Sk jk = o 

Print i 
k’ j 

i and set Ii i, =  0 
k’ 

z 

stop 
I 

Fig. 2. Flow diagram of the optimization procedure. 

given below and on the branches joining the nodes in 
Fig. 3. Natural logarithms are used in the computation. 

1(x1, x,) = 0.079 

1(x,, z,) = 0.00005 

1(x1, 21) = 0.0051 

1(x2, x,) = 0.189 

1(X2, x,) = 0.0051 

1(x,, 2,) = 0.0051. 

Since 1(x2, x,) and 1(x1, x2) are the two largest quantities, 
(x2, 2,) and (x1, x,) constitute the first two branches of 
the optimum dependence tree. To select the next branch, 
we note that 1(x1, x4) = 1(x2, x4> = 1(x3, x,). Our program 
usually would pick arbitrarily any one of these three 
branches and proceed to the next branch. However, 
since this is the last branch to be selected in this example, 
we accept all three alternatives and list their correspond- 
ing probabilities in Table II. 

For comparison purposes, the approximant with the 
assumption of statistical independence is also listed in 
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TABLE I 
A BINARY PROBABILITY DISTRIBUTION 

x2 0.079 *I 

k?i z 

El 

z 
8% 0 ‘0 d 

O0 OS 
0. 

*3 0.005 x4 

Fig. 3. Selection of an optimization dependence tree. 

TABLE II 
OPTIMAL TREE APPROXIM~TIUN 

0110 0.068 0.068 0.068 

0111 0.054 0.055 0.055 

1000 0.053 0.052 0.052 

1001 0.064 0.065 0.065 

-165 

Table I. A comparison of the figures on Tables I and II 
shows that the optimum tree approximants are closer 
to the true distribution. The closeness measure of ap- 
proximation I(P, P,) for any of the three optimum dis- 
tributions of tree dependence is 0.094; that for the in- 
dependent distribution is 0.364. 

We have illustrated here only a simple problem, but 
the computational advantage of our technique becomes 
more and more prominent as the combinatorial feature 
becomes magnified for larger values of n. 

V. ESTIMATION 

In applications, the probability distribution is fre- 
quently not explicitly given and only samples are available. 
It is necessary to construct a distribution from the samples. 
This situation is typical in most pattern-recognition 
problems. To achieve a second-order product approxima- 
tion, the dependence tree, in addition to the parameters, 
must be estimated. The problem of estimating from 
samples the values of parameters has been extensively 
treated by statisticians, and many methods are available 
for such estimation. However, the problem of constructing 
dependence trees makes a new method necessary. 

A method is developed in this paper to construct an 
optimal dependence tree from samples. Two approaches 
are possible. The one that seems more natural in the 
present context is to extend the optimization procedure 
to empirical observations; the ot#her is to apply the 
principle of maximum likelihood (see Appendix). It is 
significant that both approaches lead to t’he same estima- 
tion procedure. 

Let x1, x2, . . . , x8 be s independent samples of a finite 
discrete variate x. x is the vector (z,, x2, . . . , 2,) and x* = 
<x:, xf, ’ . . ) 2:). The estimation procedure is as follows. 

1) Compute for all pairs of variables 2, and xi the sample 
joint frequencies f(zi, xi) as 

and 

.fu(4 = C f,‘,,(i, j) 

where f..(i, j) and S”<(i) denote f(xi = U, Xj = U) and 
f& = u), respectively, and nuu(i, j) is the number of 
samples such that their ith and jth components assume 
the values of u and v, respectively. It is well known that 
fUD(i, j) is a maximum-likelihood estimator for the prob- 
ability P(x7 = u, q = v). 

2) Compute for all i and j the sample mutual informa- 
tion II(z,. xi) as 

3) Take 1(x,, xi) as I(zi, Xi) and use the optimization 
procedure to obtain a tree 7 such that the tree sum of 
mutual information 
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is maximized. 

The procedure minimizes the sample value of the 
closeness measure. Furthermore, it can be shown (see 
Appendix) that the procedure also maximizes the likeli- 
hood function and is a maximum-likelihood estimator for 
the dependence tree. The consistency property of maxi- 
mum-likelihood estimates also holds for our procedure. 
In consequence, if the underlying distribution is one of 
tree dependence, then the tree rendered by the present 
precedure converges with probability one to the true tree 
of dependence. 

In the following application to a pattern-recognition 
problem, the probability distributions are estimated by 
this procedure. 

VI. APPLICATION TO PATTERN RECOGNITION 

Pattern recognition can be considered as a statistical 
decision problem. Within the framework of a statistical 
decision approach, the structure of optimum recognition 
systems depends upon a set of conditional probability 
distributions. 

Let c be the number of pattern classes, and let ai 
denote the ith class. Let p = (pl, pz, - -a , pJ be the 
a priori distribution of the classes. An unknown pattern 
represented by a measurement vector x = (x1 ,zZ . . . , z,) 
is decided to be a sample of class ak if 

for all i. 
Since the information about the patterns is generally 

contained in a set of samples, the central problem here 
is to estimate or to approximate the unknown conditional 
probability distributions P(x 1 ai). It is reasonable to 
assume that optimum approximations of the conditional 
probabilities P(x 1 ai) would lead to effective recognition. 

The problem of recognizing hand-printed numerals was 
investigated. Approximately 19 000 numerals produced 
in the course of routine operations by four inventory 
clerks in a department store were scanned by a CRT 
scanner. Samples of scanned numerals are shown in 
Fig. 4. Ninety-six binary measurementsL7’ were used to 
represent the numerals. Samples were divided into two 
subsets; the first subset consisting of 6947 samples was 
employed as design data, and the remaining 12 000 
samples were used for testing. The tree approximation 
program was used to derive 10 optimum dependence 
trees, one for each class of numerals. Fig. 5 shows the 
first part of the dependence tree derived for numeral 4. 
Recognition based on a procedure discussed in Chow”’ 
was tried on the test data set. Results are depicted by the 
error versus rejection curve in Fig. 6. 

For comparison purposes, results from assuming the 
independence of measurements are also plotted in Fig. 6. 
A reduction in error rate by a factor of 2 was realized 
by the tree approximations. This reduction is considered 
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Fig. 4. Samples of scanned numerals. 

Fig. 5. First part of dependence tree for numeral 4. 

..- 
A= INDEPENDENCE 

1.4 B  =OPTIMUM TREE 
DEPENDENCE 

- 1.2 v i ’ @=ARBlTRARY TREE 
0 DEPENDENCE 

x 1.0 

REJECTION RATE (x 10-2) 

Fig. 6. Error versus rejection curves. 
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significant, although it may not be the best achievable 
with a second-order product approximation, since the 
present approximation criterion is not that of minimizing 
the recognition-error rate. Recently, some progress has 
been reportedc6’ toward minimization of error rate; how- 
ever, there is yet no general solution. 

In order to examine the effectiveness of the optimum 
dependence tree as compared with an arbitrary depen- 
dence tree, the following recognition experiment was 
simulated. Each measurement zi, i = 2, 3, . . * , 96 was 
assumed to depend upon its predecessor Q-~; P(x, [ x0) 
by definition is equal to P(sl). The resulting decision 
function misrecognized 0.829 percent of the test sample 
set. Although this percentage is somewhat lower than that 
(0.901 percent) obtained with the assumption of measure- 
ment independence, it is still higher by about a factor of 2 
than that (0.417 percent) obtained with the optimum 
dependence trees. 

VII. CONCLUSIONS 

The viewpoint and mathematical model described in 
an earlier paper for the design of pattern recognition net- 
works are applied here to the problem of approximating 
an nth-order probability distribution by a particular 
class of distributions in which each variable is conditioned 
upon, at most, one other variable. When an information 
measure is used as the criterion of goodness of approxima- 
tion, necessary and sufficient conditions for the optimum 
approximation of a given nth-order probability distribu- 
tion are derived. Consequently, an efficient computational 
algorithm is obtained. 

It is further shown that when only samples drawn from 
the &h-order distribution are available, the optimization 
procedure can be extended to construct the dependence 
tree as well as to estimate the parameters. In fact, the 
procedure leads to a maximum-likelihood estimator of 
the dependence tree. 

In addition to the theoretical studies, some experiments 
are carried out to investigate the effectiveness of the 
present method as applied to the recognition of hand- 
written numerals. It is found that significant improvement 
of recognition performance may be realized with the 
present procedure. 

APPENDIX 

A MAXIMU~FLIKELIHOOD ESTIMATOR 

The estimation procedure as described in Section V 
is the maximum-likelihood estimate of the dependence 
tree. A sketch of the proof is included here. 

The likelihood function of s independent observations 
x1, x2, * . . ) and x8 from the distribution of tree dependence 
P,(x) is 
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where (ml, m2, . . . , m,) is an unknown permutation of 
integers 1, 2, * h * , n; and its logarithm, after an inter- 
change of the orders of summation, is 

= 2 f: log P(x”m ; ( x:j,J. 
2=, k=1 

The last expression is to be maximized by selecting a 
tree and its associated conditional probabilities. This 
maximization is achieved in two steps: 

max [It(~‘, x2, . . . ) x*)] 
t 

The inner sum, for a given tree t, is maximized when the 
observed sample frequencies (5) are used as the estimates 
of the conditional probabilities. Consequently, (8), with 
some algebraic manipulations, becomes 

max [Z1(2’, 5*, . . . , x’)] 

where K is cypl c;il log P(z&) evaluated over the 
sample and is independent of the tree t. 

The remaining problem now is to choose the tree t such 
that the sum on the right-hand side of (9) is maximum. 
This is achieved by employing the optimization procedure 
described in this paper, with 1(x,, xj) as the branch 
weights. The proof is thus established. 
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