
340 IEEE TRANSACTIONS O N PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

Optimal Partitioning for
C lassification and Regression Trees

Philip A. Chou, Member, IEEE

Abstract-In designing a decision tree for classification or regression,
one selects at each node a feature to be tested, and partitions the range
of that feature into a small number of bins, each bin corresponding to a
child of the node. When the feature’s range is discrete with N unordered
outcomes, the optimal partition, that is, the partition minimizing an
expected loss, is usually found by an exhaustive search through all possible
partitions. Since the number of possible partitions grows exponentially
in N, this approach is impractical when N is larger than about 10 or
20. In this paper, we present an iterative algorithm that finds a locally
optimal partition for an arbitrary loss function, in time linear in N for
each iteration. The algorithm is a K-means like clustering algorithm that
uses as its distance measure a generalization of Kullback’s information
divergence. Moreover, we prove that the globally optimal partition must
satisfy a nearest neighbor condition using divergence as the distance
measure. These results generalize similar results of Breiman et al. to an
arbitrary number of classes or regression variables and to an arbitrary
number of bins. We also provide experimental results on a text-to-
speech example, and we suggest additional applications of the algorithm,
including the design of variable combinations, surrogate splits, composite
nodes, and decision graphs.

Index Terms-Clustering, decision trees, information divergence, text-
to-speech.

I. INTRODUCTION

A CLASSIFICATION or regression tree is a binary tree, not
necessarily balanced, that given an input X produces an

output ? that approximates some random variable of interest
Y, stochastically related to X. This deterministic mapping is
accomplished as follows. Associated with each internal node of
the tree is a binary function of the input X, and associated with
each external node is a specific output label Y. Starting at the root
node, the binary function is used to test the given input X. If the
result is “O ”, the left branch is followed; if the result is “l”, the
right branch is followed. The process is repeated until reaching
an external node, or leaf, at which point the associated label Y is
output. The tree is designed to minimize (at least approximately)
the expected loss between Y and Y.

As an example, consider the classification tree of Fig. 1 for
an optical character recognition (OCR) problem. With Y a letter
in {“a”, . . . , “z”}, and X a feature vector (X,, . . . , X8) whose
components, shown in Table I, are derived from a noisy image
of Y, this tree attempts to classify X by testing one component
at each node. The root node, for example, tests component X8.
If X8 E { 1,3,7}, then the left branch from the root is followed,
otherwise the right branch is followed. The image of a character
with feature vector (1, 1, 1, 1, 1, 1,2,7) would be mapped into

Manuscript received September 28, 1989; revised May 16, 1990. This work
was supported in part by the National Science Foundation under Grant IST-
8509860.

The author is with the Xerox Palo Alto Research Center, Palo Alto, CA
94304. This work was performed while he was with the Department of
Electrical Engineering, Stanford University, and with the Department of Signal
Processing Research, AT&T Bell Laboratories,

IEEE Log Number 9041537.

TABLE I
FEATURES FOR OCR EXAMPLE

Feature Possible Outcomes

Xr (north concavities)

Xz (south concavities)

X3 (northwest concavities)

X4 (northeast concavities)

X5 (southwest concavities)

Xs (southeast concavities)

X7 (vertical bars)

Xs (horizontal lines and loops)

1 no concavity
2 shallow concavity
3 deep concavity
4 two concavities
5 three or more concavities
1 no concavity
2 shallow concavity
3 deep concavity
4 two concavities
5 three or more concavities
1 no concavity
2 northwest concavity
1 no concavity
2 northeast concavity
1 no concavity
2 southwest concavity
1 no concavity
2 southeast concavity
1 no vertical bars
2 one narrow vertical bar
3 two vertical bars
4 three vertical bars
5 four vertical bars
6 five or more vertical bars
7 one wide bar on the right
8 one wide bar on the left
1 simple line
2 complicated line
3 simple loop
4 complicated loop
5 exactly two loops
6 three or more loops
7 two or more components

Y = “i”, based on the fact that X8 = 7 = “two or more
components” and X6 = 1 = “no southeast concavity.” Note that
many different feature vectors may map to the same leaf, and that
many different leaves may have the same label. Furthermore,
some classes may not be represented by any label. The tree
is designed so that the probability of error, or the expected
loss between Y and Y’, is low, where the loss here is the
misclassification cost: 1 if Y # Y and 0 otherwise.

The difference between a classification tree and a regression
tree is that in a classification tree, Y is “categorical” (i.e., takes
values in a discrete set), whereas in a regression tree, Y is
“continuous” (i.e., real-valued) and can be either a scalar or
vector. Classification tree performance is usually given in terms
of probability of error; regression tree performance is usually
given in terms of mean squared error. In general, performance is
measured by expected loss, for some appropriate loss function.
Classification trees, also called decision trees in the literature,
have been well-studied, with applications including pattern recog-

0162-8828/91/040~0340$01.00 0 1991 IEEE

I

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES

Fig. 1. Classification tree for OCR example.

341

nition [l]-[lo], logic design [111, taxonomy, questionnaires, and
diagnostic manuals [12], expert systems, and machine learning
[13]-[20], and the conversion of decision tables to nested
“if . . . then . . . else” rules for computer programs [21]-[31].
Regression trees have also found applications in a number of
areas, including least squares regression [32], [33], [7] and vector
quantization [34] - [36].

Due to the inherent computational complexity of construct-
ing optimal trees (i.e., trees having the minimal expected loss
for their size) [37], [38], practical procedures for constructing
trees are almost universally steepest-descent greedy procedures
that “grow” trees outward from the root. Each step of such a
procedure operates on a partially grown tree by splitting some
terminal node into two children, making it a parent node. The
parent node is assigned a binary test, or function of the input X,
that among some collection of tests permitted at that node, most
improves the performance of the new tree. Thus the procedure
is stepwise optimal.

In a straightforward version of the growing procedure, an
exhaustive search through the collection of permissible tests is
performed at each node. If the collection of tests is large, then
the run time of the growing procedure is also large. In particular,
if the feature vector X = (X,, . . . , XJ) includes a categorical
feature variable X taking values in a finite set A = {x1, . . , x,,,},
say, then the collection of permissible tests on X includes the
tests

if X E A0
if X E A,

for each partition A,,, Al of A (A,, U A, = A and A, n Al = 0).
Since the number of such partitions is 2N, the run time of the
growing procedure is exponential in the size of the alphabet N.

For small problems, such as the OCR problem in which the
feature with the largest alphabet has only N = 8 possible
outcomes, this exponential run time may not present much
difficulty. But for larger problems, e.g., an OCR problem in
which the feature vector also includes the class assigned to
the previous character, the number of permissible tests at every
node becomes more than 2”j, and the run time of the growing
procedure becomes impossibly large. Much larger collections of
tests are just as easy to imagine.

For some problems, algorithms for finding optimal partitions
in linear time (in N) have been discovered. In 1958, for example,
W . D. Fisher noticed that when Y is real-valued (the scalar
regression case), the least squares partition A,,, Al of A is
contiguous, in the sense that

E[Y (x = x] 5 E[Y 1 x = TiT]

for all z E A0 and z E Al [39]. Thus to find the optimal least
squares partition it suffices to consider only the N - 1 contigu-
ous partitions, rather than all 2” partitions.

In 1984, Breiman et al. extended Fisher’s result to the case
when Y is binary (the two-class case), and to arbitrary convex n
impurity measures [7, Theorem 4.51. (The relationship between
impurity measures and loss functions is described in Section 11.)
These results can be viewed geometrically as follows. If the N
points E[Y (X = Z] for z E A = {xi,. .. ,xE} are plotted
on the real line, then there is a threshold such that all the Z’S
corresponding to points below the threshold belong to the optimal
A0 and all the Z’S corresponding to points above the threshold
belong to the optimal Al. Therefore it suffices to evaluate each
of the N - 1 possible thresholds, and choose the partition with
the best performance.

In 1988, Chou extended Breiman’s result to arbitrary numbers
of classes (in the classification case) under the log-likelihood loss
function, and to vectors of arbitrary length (in the regression case)
under the squared error loss function [lo]. Briefly, the threshold
of Breiman et al. was generalized to a hyperplane for these
cases, and the set of possibly optimal partitions was searched
in linear time per iteration by an iterative descent algorithm
formally equivalent to the K-means algorithm [40]-[44] or the
generalized Lloyd algorithm [45], [46], but using a different
distance measure depending on the loss function. The results
were also extended to locally optimal K-ary partitions, K 2 2.
This led to trees of degree K > 2, and more usefully, to directed
acyclic decision graphs, called decision trellises.

The present paper is the journal version of the optimal parti-
tioning results of [lo]. In addition, the present paper generalizes
the results of [lo] to arbitrary loss functions, in a unified mathe-
matical framework, and describes a number of other applications

342 IEEE TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

of optimal partitioning within the context of decision tree design.
The Appendix catalogues some fairly general loss functions.

Independently, Burshtein et al. generalized the results of [lo]
in another direction: to arbitrary convex n impurity measures,
and proposed a polynomial time algorithm based on linear
programming for finding the globally optimal binary partition
[47], [48]. Unfortunately their algorithm is exponential in the
number of classes (in the classification case) or the length of the
vector (in the regression case). Furthermore it is valid only for
the binary (K = 2) case. It is, however, guaranteed to find the
globally optimal partition, whereas the iterative descent algorithm
is not.

The present paper unfolds as follows. The next section,
Section II, develops the relationship between the loss functions
used to measure tree performance and the measures of node
impurity used in [7], [47], [48], and introduces the notion of
divergence, the “distance” to be used in the iterative descent
algorithm. Section III presents the main theorem-necessary
conditions on the form of the optimal partition in higher
dimensions-and proves it constructively. This construction
leads directly to the iterative descent algorithm, which is also
presented in Section III. Section IV applies the iterative descent
algorithm to splitting nodes within the greedy growing algorithm
during the design of a decision tree for a text-to-speech system.
Section V suggests further applications of the algorithm in
decision tree design, including variable combinations, surrogate
splits, composite nodes, higher order splits, and decision trellises,
Section VI is a discussion and conclusion.

II. Loss, IMPURITY, AND DIVERGENCE

W e begin with the loss function C(y,$), which measures
the loss, or cost, incurred by representing the object y by the
approximation 3. Typical examples of loss functions are the
misclassification error

C(Y>L) = ‘:
1

ify=$
ify#$’

used in classification, and the squared error

e(Yle) = IIY - Ll12:
used in regression. Weighted versions of these also exist. (See
Appendix A.) W e do not restrict f to have the same alphabet as y.
For example, in the M-class case, if y takes values in { 1, . . , M}
and 6 is any probability vector 6 = (6(l), . . . ,6(M)), then the
log likelihood loss function is defined

e(Y,b) = - l%li(Y).

(This can be interpreted as the number of bits required to specify
y when using an entropy code matched to fi, and hence is useful
in designing decision trees for data compression [49].) However,
we will usually take both y and G to be M-dimensional vectors
(hence the boldface notation). In the case of classification with
M classes, y will be the class indicator vector whose components
are all “O”, except for the yth component, which is “1”. W e will
use the nonbold symbol y when necessary to represent the index
of the class in {l,...,M}.

The particular loss function chosen for a given application
may be motivated by any number of things: physical (e.g.,
perceptual) criteria, theoretical properties, standard convention,
or a combination of these. Selection of the loss function is
not addressed in this paper. However, a number of special loss
functions are treated in Appendix A.

Since a classification or regression tree represents a random
object Y by a deterministic mapping Y = q(X), say, we can
measure the performance of the tree by the expected loss, or risk,

R(s) = -WY> d-v)l. (1)
Here, of course, we are assuming X and Y are jointly distributed
random objects on an underlying probability space. In practice,
the risk (1) is evaluated by taking sample averages. Hence
validation, or the process of verifying the risk on independent
data, is an important aspect of tree design. However, validation
is not our primary concern here. In this paper, we simply design
with a training sequence of (X, Y) pairs and validate with
a separate test sequence. (The more sophisticated method of
cross-validation [7] could also be used.) All probabilities and
expectations in this paper may be respectively interpreted as
sample distributions and sample averages of a training sequence.

W e can express the risk (1) as a nested expectation by
conditioning on the leaves of the tree, as follows. Let T denote
the set of nodes in the tree, and take each t E T to be an event in
the original probability space. Thus P(t) is the probability that
node t is reached when X is classified. Let T & T denote the
subset of leaves of T. W e can see that the set of leaves p forms a
partition of the sample space. Hence the risk (1) can be rewritten

R(q) = c P(t) . -w(Y, ti(G) I 4,
tti‘

(2)

where c(t) is the output label at leaf t.
At each node t, the constant output label c(t) that minimizes

the conditional expected loss E[C(Y, G(t)) 1 t] will be called the
centroid of t, which we shall denote

p(t) = argm;lnE[e(Y,G) 1 t].

(Here and throughout the paper, arg min, f(x) denotes any Z,
not necessari ly unique, that minimizes f.) The minimum value
of this expected loss,

will be called the impurity of t. With these definitions, it is clear
from (2) that

R(s) 2 ‘p(tW. (3)
tgT

If the output labels are chosen to be the centroids of their nodes,
then (3) hold with equality, so that

(4)

This is assumed in the sequel.
Impurity has the following convexity property. Let the node t

be split into left and right children to and tl. (This corresponds
to splitting the event t into two events t,, and tl.) Then by the
definitions of i(t) and p(t),

i(t) = P(hl I W [W, P(t)) I to] + P(h I q-WY, p(t)) I b]
2 P(h I t)i(t”) + P(b I t)i(t& (5)

That is, the average impurity of a node never increases when the
node splits. Multiplying (5) by P(t), we obtain

e+(t) L P(t&(to) + P(tlP(tl).

I

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES 343

Hence we see that the overall r isk (4) of a tree likewise never
increases when a node splits. Moreover, when a node is split, the
decrease in the tree’s overall r isk is equal to the decrease in the
node’s average impurity (times the probability of the node).

In the greedy growing procedure, at each node we seek the
split, or binary test of X, that most reduces the overall r isk of
the tree, i.e., most improves its performance. But by what we
have just said, this is equivalent to finding the split that most
reduces the average impurity of the node.

Breiman et al. [7] and Burshtein et al. [47], [48] use a slightly
different definition of impurity. They define p(t) to be the
expected value of Y given t, E[Y 1 t], and they let 4 be an
arbitrary convex fl functional. Then they define the impurity to
be i(t) = 4&(t)). Th is will also have the convexity property
(5), owing to the convexity of 4. As pointed out in [48], such a
formulation can be used to minimize the risk, or expected loss,
in those cases where the loss function can be expressed

l(Y,ti) = lO(Y> 6) + b(Y), (6)

where &(y, 6) is affine in y. Note that the squared error
C(Y76) = c, (Ym - 8rd2 satisfies (6), as does the misclassi-
fication error l(y, 6) = c, (1 - ym)&,, where y is a class
indicator vector and B is a class probability vector. (See also
Appendix A.) However, neither the absolute error c, 1~~ - $, 1
nor the maximum error max, Iym - &I satisfy (6). In case the
loss function does satisfy (6), however, the functional 4 may be
defined

G) = min ~o(P, 6).
Y

Then, defining p(t) = E[Y I t] and i(t) = #@(t)), the split that
most reduces the average impurity of a node, also most reduces
the overall risk. In our work, the special form (6) is not assumed.

Finally, we introduce the notion of divergence. This is the key
to formulating the partitioning algorithm as an iterative descent:
divergence is needed to play the role of the metric. Suppose an
arbitrary output label 6 is used in place of the centroid p(t). The
divergence of $ from t (or from p(t)) is defined to be the increase
in expected loss when 0 is used to represent Y instead of ,~(t):

46 G) = -WV’, 9) I tl - WY> p(t)) I tl
= E[C(Y,9) I t] - i(t).

Notice that by definition, d(t, 9) 2 0 for all G, with equality if
6 = p(t) (although ,u(t) is not necessarily unique).

This corresponds exactly to Kullback’s information divergence
[50], when the log likelihood loss function is used (hence
our use of the name “divergence”). However, many other loss
functions commonly used in classification and regression also
induce divergences that are easily characterized. These include
the weighted squared error, the minimum relative entropy, the
Itakura-Saito distortion, the weighted misclassification error, and
the weighted Gini criterion. These are catalogued in Appendix A.

III. OFTIMAL PARTI~ONING

The greedy growing algorithm for constructing classification
and regression trees seeks at each node t, and for each categorical
variable X in the feature vector X = (X1,. . . ,XJ), the test or
split or partition of X that most reduces the overall r isk of the
tree. We have seen that this is equivalent to seeking the partition
that most reduces the average impurity of the node. Finding this
optimal partition is the partitioning problem.

C, JY4+(4

Fig. 2. Two-stage refinement of an

More formally, let X be a discrete random variable with
alphabet A = {x1, . ,xN}. Given an event t, the partitioning

problem is to find a binary partition A”, Al of A that minimizes
the average impurity,

I(Ao, Al I t) = P(to I @(to) + P(tt I tMtd> (7)

where the events to = t n {X E A,} and tl = t n {X E A,}
partition t according to whether X falls into A0 or its complement
At.

One way to view the problem is as a two-stage refinement
of t, as shown in Fig. 2. We are given the coarsest partition
of t, t itself, with impurity i(t), and the finest partition of t,

{Xl,..., zN}, with average impurity C, P(s, I t)i(xn). (Here,
we are using the letters x1,. . . , ZN to stand for the “atomic”
events t n {X = z,}, n = 1, e e +, N.) We seek an intermediate
partition oft, to, tl, or equivalently A,,, Al, with the least possible
average impurity C,=,,, P(tk 1 t)i(tk).

The convexity property (5) assures us that the average impurity
does not increase as the partition is refined. Hence the differences
in average impurity, A,, AZ, and A,,, shown in Fig. 2, must
always be nonnegative. Indeed, they may be interpreted as
average divergences:

A,, = i(t) - c p(x, I t)i(xn)

= c P(G I t){JYW, P(t)) I 4 - i(L))

(8)

A, = iit) - c P(tk I t)i(tk)
k=O,l

= c P(tk 1 t){E[e(y?p(t)) 1 tkl - i(tk)}
k=O,l

and

= c P(tk I t) d(ik, CL(t)),
k=O,l

(9)

A, = c P(tk (t)i(tk) - cp(&, 1 t)i(%)
k=O,l n

344 IEEE TRANSACTIONS ON PA-ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

k=U,l

(lo)

Note that the sum A,, = A, + A, is fixed, and that the aver-
age impurity (7) can be expressed

I(Ao, Al 1 t) = i(t) - A,

= c P(x, I t)i(xn) + AZ. (11)

Thus minimizing the average impurity of the intermediate parti-
tion is equivalent to either

1) maximizing the average divergence Al, or
2) minimizing the average divergence 02.

According to (9), maximizing A, corresponds to maximizing the
weighted sum of divergences from to and ti to the centroid p(t)
of t. Dually, according to (lo), minimizing A2 corresponds to
minimizing the weighted sum of divergences from xi,. . . , zN to
the centroids of their assigned bins, either p(to) or p(tl).

To see the latter more clearly, let cy : A -+ (0, l} be the
function that assigns each letter in A to one of the two bins
A0 or Al, and let /3(.) be the function on (0, 1) that assigns a
centroid to each bin. That is, for each z E A, let

a(x) = {; if z E A.
if z E Al

and for Ic = 0, 1, let

P(k) = hL(tk).

Then, since P(z 1
A2 (10) becomes

tk) = 0 whenever x $! Ak, the expression for

A, = c P(tk 1 t) c p(x 1 tk) d(x.h(tk))

k=O.l rC.4,

= c P(tk 1 t, c p(z 1 tk) ‘%-hP(dz))) (12)

k=O,l r,(z)=k

= c P(x I t) 4x, P(dx))). (13)

Thus, A, is the weighted sum of the divergences from each z to
the centroid of its assigned bin, either p(O) or p(l).

These weighted sums of divergences, Ai2, A,, and A,,
are illustrated in Figs. 3(a), (b), and (c), respectively. Events
t,tO,tlrxl,‘~., zN are represented by their centroids, p(t), p(to),
dtl),PL(~l), . ‘. 3 P(XN;)> as points in a vector space. The
divergences between them are shown as directed arcs. For
example, d(x,,p(t)) lies on the arc between CL(Q) and p(t).
Imagine that each centroid has a mass equal to the probability
of its associated event, e.g., the mass of P(Q) is P(zz I t).
Then, each divergence is weighted by the mass at its tail, and
the weighted divergences are summed to obtain the average
divergences A,, in Fig. 3(a), A, in Fig. 3(b), and AZ in Fig. 3(c).
The total weighted arc length in Fig. 3(a) is thus equal to the sum
of the weighted arc lengths in Figs. 3(b) and (c).

Fig. 3(c) suggests that we can find the optimal partition Ao, Al
of A by clustering xi, . . , xLV into two bins such that the
weighted sum A, (13) is minimized. We can interpret the func-
tion (Y in (13) as assigning each z to one of the two clusters, and
the function p as assigning a centroid to each of the two clusters.

The alternative interpretations of LY and p are many. As we
just said, we can interpret a as assigning each x, to one of the

I&) * t
44

(b)

l r(t1)

PC4

(4 P(+N)

Fig. 3. Decomposition of average divergence.

two bins Ao, Al. But we can also interpret LY as assigning each
outcome of X to the left or right child of a node, and ,Ll as
assigning optimal output labels to the left and right children.
Or, we can interpret Q as the “split” at a node, i.e., as a
particular test of a particular feature variable in the feature vector
x = (Xl,... , X,). All of these views are equivalent.

In some common cases, the decomposition A,, = A, + A,
is well known. Indeed, it has been glorified as a Pythagorean
theorem [.51]. For example, in the case of the squared error loss
function, A12, A,, and A2 are the “total sum of squares,” the
“between sum of squares,” and the “within sum of squares,”
respectively. The best split on X is the one that maximizes the
between sum of squares (i.e., the distance between left and right
centroids), or equivalently, minimizes the within sum of squares
(i.e., the residual variation).

In the case of the log likelihood loss function, A,,, Ai, and
A, are the mutual informations I(Y; X) t), I(Y; o(x)) t), and
I(Y; X I o(X), t), respectively. In this case, the best split on X
is the one that maximizes the information I(Y; o(X) (k) gained
about Y when o(X) is learned, or equivalently, minimizes
the information I(Y; X 1 o(X), t) lost about Y when direct
knowledge of X is replaced by knowledge of o(X) alone.

We will now show that the optimal cy maps each outcome of
X to its rzearest neighbor, p(tO) or &), using the appropriate
divergence as the distance measure. That is, the optimal binary
split cr has the following form:

4x1 if = 1 0 4x, 4t0)) < 4x, Ah))
1 if 4x, ,4t0)) > 4x, Ah))

I

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES 345

for all x E A if P(x] t) > 0, and is arbitrary if P(x 1 t) = 0
or if the divergences are equal. If this were not the case, i.e.,
if the optimal cy were not a nearest neighbor mapping, then
we could construct another mapping, say a’, that would strictly
decrease A2 and hence strictly decrease the average impurity,
contradicting the optimality of CL

To see this, assume o(x) is not a nearest neighbor mapping.
Let /3(/c) = p(tk) be the centroid of tk = t rl {c(X) = k},
as assumed in (12) and (13), and construct the nearest neighbor
mapping

C 0 a'(x) = l if 4x, P(O)) < 4x, P(1))
if 4x, P(O)) > 4~ P(1)) (14)

with o’(z) arbitrary if P(x 1 t) = 0 or if the divergences are
equal. Since by assumption, o(x) is not a nearest neighbor
mapping, there exists at least one x such that P(z] t) > 0,
d(x, p(O)) # d(x, p(l)), and o(x) # a’(x). Furthermore, for all
such x’s,

Thus

4x1 P(a’(x))) < 42, P(dx))).

a2 = c P(x I t) 4x, @(Q’(X)))

< c P(x I t) 4x> P(4x)))
= AZ, (15)

where the second equality follows from (13).
This does not yet prove that a’ is a better partition than a,

since p does not match a’ and hence & is not a difference of
average impurities, as is A,. However, let p’(k) = p(t;) be the
centroid of tk = t n {o’(X) = k}, so that

p’(rC) A argminE[I(Y, 6)] $1

“: = arg m m L c P(x I t:v-v(y,~) I4
r:a’(r)=k

= arg mjn c P(x I t:) 4x1 ti), (16) Y
z:a’(z)=k

where the last equality follows from the definition d(x, 6) =
E[C(Y, 6)] Z] - i(z). Then the difference between the average
impurity of the intermediate partition induced by (Y’ and the
average impurity of the most refined partition is given, as in
(12) and (13), by

A: = c P(x I t) 4x, P’(~‘(~)))

= c P(fk I t) 6% I 6%) 4x, P’(k))
k z:a’(t)=k

i c et: I t) c Pb I 6%) 4x> P(k))
z:a’(r)=k

The inequality, of course, follows from (16).
Combining (15) and (17), we obtain

A; 5 a, < AZ.

(17)

(18)

In other words, the average impurity of a’ is strictly lower than
the average impurity of cr, contradicting the fact that CY is optimal.
Hence the optimal cy must be a nearest neighbor mapping.

W e have proved the following for the binary K = 2 case.
Theorem (Optimal Partitioning): A necessary condition on . any K-ary partrtton AO,. . . , AK-, of A = {z,, . , z,~} min-

imizing the average impurity
I<--1

I(Ao, . . , Al<-1 (t) = c P(tk 1 +ltk)

k=O

is that z E Ak only if k = arg min d(z, p(tk)), or if P(s I t) =
0, where tk = t n {X E &}.

Thus a necessary condition for a partition to minimize the
average impurity is that its bins satisfy a nearest neighbor
condition with their centroids, where the “distance” measure used
for computing both the nearest neighbors and the centroids is the
divergence corresponding to the given impurity measure. Here,
of course, we have defined the impurity at node t to be the
minimum expected loss

i(t) = $nE[e(Y,G)] t],

the centroid of node t to be the output value achieving the
impurity

At) = arg m jn MY, L) I 4,

and the divergence of an output
to be the excess expected loss

value 6 from the centroid P(t)

qt, 6) = E[C(Y, 9)) t] - i.(t)

The proof for K > 2 is a straightforward extension of the
K = 2 case, and is not detailed here.

As an example, consider M-dimensional multivariate re-
gression under the squared error loss function. As shown in
Appendix A,

4x1 P(b)) = lb(x) - /4hI12>
where ,u(z) = E[Y] x] and p(tk) = E[Y I tk] are the ex-
pectations of the M-dimensional random vector Y given t fl
{X = x} and t n {a(X) = k}, respectively. According to the
theorem, the optimal binary split pi has the following form:

1
0

4x)= 1
if lb(~) - dt0)l12 < IlcL(x) - dh)l12
if lb(x) - I-L(t0)l12 > lib(z) - dtdl12

with o(x) arbitrary if P(x I t) = 0 or if CL(Z) is equidistant from
p(tO) and &). That is, assign x to the left child if the vector
E[Y I Z] is closer to p(tO) than to p(tl); otherwise assign x to
the right child. This reduces to a simple hyperplane test: send x
to the left whenever

cl(x) . (CL(h) - f4h)) I (Il&0)ll’ + ll/4~1)11”)/2~
where “ . ” denotes dot product. In one dimension, this reduces
still further to a threshold test on b(x) = E[Y I x], in accordance
with Theorem 4.5 of Breiman et al. [7].

As another example, consider M-class classification under the
log likelihood !oss function. As shown in Appendix A,

4x7 P(tk)) = %(~)llP(h))r

which is the information divergence, or relative entropy, between
M-dimensional probability mass functions P(Z) and CL(&) of Y

346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

given t n {X = x} and t n {o(X) = k}, respectively. Once
again, the optimal Q reduces to a simple hyperplane test on the
probability vector p(x) = E[Y (x] = Pylx(. 1 z): send z to the
left whenever

w4~M~o)) I w4x)IICL(~JL
or equivalently, whenever

M

c &I(x) 1% -
Pm(tl) < 0,

m=l Pm(tO) -

In the two-class case, by expressing pa(z) as 1 - pi(x), this re-
duces still further to a threshold test on pi(x) = P(Y = 1 I x) =
E[Y I x], in accordance with [7, Theorem 4.51.

In fact, Burshtein et al. [48] have shown that the optimal
binary a reduces to a simple hyperplane test on p(x) for any
loss function satisfying (6). This is the case for all of the loss
functions listed in Appendix A.

Our theorem gives- necessary conditions for a partition to
minimize the average impurity, and hence greatly reduces the
number of partitions that can possibly be optimal. In the two-bin
case, if the nearest neighbor condition reduces to a hyperplane
test, the number of partitions satisfying the necessary conditions
for optimality is at most the number of linearly separable
dichotomies of N points in A4 dimensions, or C(N, M). (A
dichotomy of N points into two sets A0 and A1 is linearly
separable if there exists a hyperplane separating points in A0
from points in A,.) Cover [52] has shown that

C(N,M)Z~.~(~;~) =“(N”).
??I=0

Thus the theorem reduces the number of possibly optimal par-
titions from exponential in N to polynomial in N (but now
exponential in M). To search through this number of possibly op-
timal partitions, Burshtein et al. [47] have proposed an O(N”)
time algorithm based on linear programming that is guaranteed
to find the optimal partition in this case. Unfortunately, even
in this case, a full search through the set of linearly separable
dichotomies is infeasible, when either N or M is large. Thus
there is still a need for an algorithm that can efficiently search
through the space of potentially optimal partitions. W e now
develop such an algorithm. The algorithm will also work for
K 2 2 (the nonbinary case) and for arbitrary loss functions [i.e.,
loss functions that do not necessari ly satisfy (6)].

Using our theorem, we can find the optimal partition Q(S),
if we know the centroids p(tk). Unfortunately, we can only
find the centroids p(tk), if we know the partition o(x). The
solution to this problem is to alternate these two steps, starting
from an initial guess. It turns out that this procedure is a descent
algorithm, in which the average divergence A, 1 0 is reduced
at each step. Consequently, convergence is guaranteed. In fact,
this algorithm is equivalent to the K-means algorithm [42] for
determining pattern clusters or the generalized Lloyd algorithm
[46] for designing vector quantizers, using the divergence as a
distortion measure.

Formally, let xl, . . . , xN be N letters, each with weight
P(x (t), and let Ao, . . . , AKvI be an initial partition of A =
{Xl,. . . ,xN} into bins. For each bin Ak, let P(k) = p(tk) be
its centroid, i.e., the vector $ that minimizes E[I(Y, 6) I tk],
or equivalently, minimizes xIEAli P(x) tk) d(x, @), where
tk = t i-l {x E Ak}. F or many loss functions (e.g., those
listed in Appendix A), p(lc) can be computed simply as the

weighted arithmetic average p(lc) = xIEAk P(x I tk)p(x) =

E[Y) X E Ak]. For others, p(k) may have to be computed by a
gradient search. Now, it follows from the construction of cy’ (14)
and ,0’ (16) in the proof of the theorem, and the result (18), that
the following two step procedure reduces the average divergence
A2, and hence the average impurity (11).

1) Update cr. to of for fixed p, by reassigning each x to
its nearest neighbor in the divergence sense. That is, let
o’(x) = arg mink d(x, p(k)), breaking ties arbitrarily.

2) Update ,D to p’ for fixed (Y’, by recomputing the centroid
of each bin.

W e have the following algorithm.
Algorithm (Partitioning): Iterate the above two steps to re-

duce the average impurity. When no further reduction occurs
(after a finite number of iterations), quit. The final mapping CY
corresponds to a locally optimal partition.

Convergence is guaranteed because the algorithm is a descent
algorithm. If a partition does not satisfy the necessary conditions
for optimality, then a new partition is constructed with a strictly
lower impurity. Except in the last iteration, a partition cannot
be tried twice, because that would imply that the impurity
does not strictly decrease between iterations. Hence the number
of iterations is bounded by the number of possibly optimal
partitions. As mentioned above, this is O(N”) in the special
but important case where the partition is binary and is given by
a hyperplane. The general bound is O(K”).

The computational complexity of each iteration of the par-
titioning algorithm is O(MKN), where, to repeat, M is the
vector length of the centroids (e.g., the number of classes or the
number of variables in multivariate regression), K is the number
of bins (e.g., the number of children of a parent node), and N
is the number of points to assign to the bins (e.g., the number
of outcomes of the categorical variable X). The average number
of iterations required is not known. Empirically, however, the
number of iterations in K-means type algorithms is small (less
than 20), and does not seem to depend heavily on M, K, or
N [44, p. 99 ff.]. In contrast, the complexity of an exhaustive
search is U(MK”). Even the complexity of the Burshtein et al.
algorithm, when K = 2 and the optimal partition is known to
be a hyperplane, is U(N”). Thus our K-means type algorithm
can find a practically optimal partition in linear rather than
exponential or polynomial time.

IV. APPLICATION TO A LARGE FEATURE ALPHABET

W e have seen that the greedy growing algorithm for designing
classification or regression trees seeks at each node the categor-
ical feature variable and the partition of its alphabet that most
reduces the overall risk of the tree. For a given node and feature
variable, the partitioning algorithm of the previous section finds a
locally optimal partition of the feature alphabet in time linear in
the size of the alphabet. This permits the use of classification
or regression trees in many problems where they would not
otherwise be feasible, i.e., in those problems with large feature
alphabets. In this section we examine one such problem: the
letter-to-sound problem.

In the letter-to-sound problem we wish to translate sentences
of text into strings of phonemes for use in a text-to-speech
system. One way to solve the letter-to-sound problem is to
treat it as a classification problem using a sliding window
technique. In this technique, each character of text is classified
into one of M phonemes by using as its feature vector a block
of the immediately surrounding text. For example, to translate

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES 347

the text “ . . . phonemes . . . ” into the string of phonemes
“ . . . F-ONEM-Z . . . “, a window of length seven, say, slides
over the text, and in each position, the classifier maps the text
within the window to a phoneme that corresponds to the central
character of the window. Characters not corresponding directly to
a phoneme, such as silent “h”s, silent “e’s, spaces, and so forth,
are ideally mapped into the null “-” phoneme, while characters
that correspond to more than one phoneme, such as the “x” in

TABLE II
PROBABILITYOF ERROR(IN PERCENT)FORTHE LETTER-M-SOUND PROBLEM

Train Test

Decision Tree 7% 10%
Neural Net 5% 22%

“exit”, are ideally mapped into special compound phonemes. V. FURTHER APPLICATIONS
The number of phonemic classes turns out to be A4 = 59 after
the null phoneme and the special compound phonemes are added
to the standard phoneme list. The number of letters in the feature
alphabet is N = 29, since each feature variable is a character
from the alphabet “a” through “z”, plus space, comma, and
period.

Sejnowski and Rosenberg solved this problem using an arti-
ficial neural network as the classifier [53]. Here, we solve the
problem using a binary decision tree as the classifier. Actually,
Lucassen and Mercer were the first to solve the problem using
a binary decision tree. However, they were unable to handle the
letters directly as feature variables, since the alphabet size N is
too large to consider an exhaustive search (or for that matter the
Burshtein et al. algorithm). Instead, they converted each window
of seven characters to a 78-bit string of binary features, and used
a conventional approach to tree design. In contrast, we handle the
characters directly as feature variables by using the partitioning
algorithm. In this way we are not constrained to use at each node
one of, say, 78 preselected binary tests.

We implemented the partitioning algorithm for decision tree
design by modifying the tree-growing software available with
the S language statistical environment [54], [55]. As described in
Appendix B, we smoothed the class probability density estimates
at each leaf so that we could use the log likelihood loss
function without the zeros in the histograms causing problems
during clustering. The smoothing procedure is consistent with
minimizing the log likelihood.

We collected training and test sets for the letter-to-sound prob-
lem from the NSF proposal used to initially fund this research
[56]. The training set consists of a sequence of 5717 characters
(39 sentences, 866 words) and the test set consists of a sepa-
rate sequence of 1862 characters (13 sentences, 313 words). The
training and test sequences were transcribed into phonemes by
machine, and then the phoneme sequences were -hand-aligned
with the character sequences, by inserting null “-” phonemes and
creating compound phonemes where appropriate.

Using the labeled training data, we designed a large classi-
fication tree and then pruned back to minimize the error rate
according to a lo-fold cross validation [7], [lo], [55]. The error
rates of the resulting 168 leaf tree on both the training and
test data are shown in Table II. Also shown in Table II are the
error rates for Sejnowski and Rosenberg’s neural network, on
the same task. Unfortunately the comparison is crude because
the training and test sequences are different in the two cases
(although they have approximately the same length). However,
preliminary results indicate that decision trees are an attractive
alternative to neural networks in terms of classification accuracy.
Moreover, in terms of computational complexity, decision trees
have a tremendous advantage: only table lookups, no multipli-
cations, are required to classifv an obiect. The decision tree
for this problem took only 20 minutes to design on a Sun
Sparcstation 1, while the corresponding neural net took over
24 hours to design on a DEC VAX 11/780 with a floating point
accelerator.

A. Variable Combinations

Suppose that we want to test more than one feature at a
single node. This may be particularly desirable if the features
are suspected of being individually uncorrelated with Y, but
jointly highly correlated with Y. The problem of selecting a
good n-tuple of features to test, and then finding a good binary
test of those selected features, is usually dealt with heuristically
[71, [571.

We can use the partitioning algorithm to help solve this
problem, since we can treat each n-tuple as a single categorical
variable with a large alphabet. For example, 10 binary feature
variables can be combined into a single categorical feature
variable with alphabet size 1024. The partitioning algorithm can
then produce a map o that assigns each possible lo-bit pattern to
either the left or right child. Conventional approaches, unable to
deal with all 21°z4 possible splits, restrict o to some simple form,
such as a boolean product of binary tests, and its complement.

Although the partitioning algorithm does not directly address
the selection of good n-tuples, it makes the selection process
considerably easier by providing a fast algorithm for evaluating
the merit of each candidate n-tuple.

B. Surrogate Splits
Suppose that at each node we wish to find not only the optimal

split of the best feature variable X, but also the optimal split of
the next best feature variable X’. This may be desirable if the
tree is to handle missing data. If the primary feature variable X
is somehow unavailable at a node, then we can use the second,
surrogate split on the secondary feature variable X’.

To design a surrogate split when the optimal split on the
primary variable is known, and the secondary variable is chosen,
we can align the categorical outcomes of the secondary variable
with the binary outcome of the optimal split. In [7], this is
performed by a linear search for the split of the secondary
variable that predicts with the minimum probability of error the
binary outcome of the primary split. Unfortunately, that error is
not connected in any way with the loss function of the problem. A
better way is to assign the categorical outcomes of the secondary
variable to either the left or right child, according to the nearest
neighbor criterion.

However, it is possible to do even better, if we know the prior
probability that the surrogate split is used, for then the surrogate
split and the optimal split can be jointly designed. This idea is
illustrated in Fig. 4. First, a decision is made as to whether to use
the “optimal” or “surrogate” split, based, for example, on whether
the primary feature variable is missing or not. The categorical
outcomes of the primary and secondary feature variables are
then aligned by assigning them to the left or right children so
as to minimize the expected loss. This is done with the usual
partitioning algorithm, treating the surrogate/optimal decision,
the surrogate split, and the optimal split as one giant composite
node, as in the figure. This composite node replaces the node

348 IEEE TRANSACTIONS O N PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

Fig. 4. Composite node for surrogate splits.

in the original tree that contained only the optimal test. In this
scheme, the “optimal” and “surrogate” tests are placed on almost
equal ground.

C. Composite Nodes
As Fig. 4 suggests, it is possible to combine several tests into

a single node, called a composite node. This arrangement may
be an attractive alternative to variable combinations.

Composite nodes are easy to construct: simply build an ordi-
nary tree; to terminate the tree in two children, treat the tree as
a composite feature variable that has one outcome per leaf. The
partitioning algorithm optimally assigns each outcome, or leaf,
to one of the two child nodes.

There is no limit to this process. Composite nodes may consist
of other composite nodes, which may consist of other composite
nodes, etc. The pylons in the trees of Bahl et al. [9] are essentially
constructed in this way, without the computational benefit of the
partitioning algorithm.

D. Higher Order Splits and Decision Trellises
The optimal partitioning theorem and the partitioning algo-

rithm apply just as easily to K-ary partitions, K > 2, as to binary
partitions. The obvious implication of this is that they apply easily
to the construction of K-ary trees, K > 2. A more interesting
implication, however, is that they apply to the construction of
directed acyclic decision graphs, which we call decision trellises.

We have already seen an example of a decision trellis: any
tree containing a composite node, strictly speaking, is not a tree
(because the children of the composite node have more than one
parent within the composite node) but is a more general directed
acyclic graph.

Things become more interesting if the leaves of the composite
nodes are partitioned into more than two bins. For example,
compare the ordinary tree shown in Fig. 5, constructed as usual
by recursively applying the partitioning algorithm to the feature
variable selected at each node, and the trellis structure shown in
Fig. 6, constructed by treating the first layer as a composite node
and applying the partitioning algorithm to its leaves, optimally
assigning them to one of four bins. Clearly, the partition no

Fig. 5. The first two layers of a tree.

Fig. 6. The first two layers of a trellis

TABLE III
REDUCTION IN CLASS ENTROPY (IN BITS) FOR THE LETTER-TO-SOUND PROBLEM

Layer
Tree Trellis

Train Test Train Test

1 0.16 0.16 0.16 0.16
2 0.08 0.10 0.20 0.19

longer respects the tree structure. However, the expected loss
of the structure E[1(Y, q(X))] is reduced, because the set over
which the minimization occurs is less constrained. An experiment
with the text-to-phoneme problem of Section IV shows that the
reduction in expected loss (here, the class entropy) in the second
layer of a seven-node trellis, such as the one in Fig. 6, is twice
the reduction in expected loss in the second layer of a seven-node
tree, such as the one in Fig. 5, when they have the same three
internal nodes. See Table III.

By considering the first two layers as a composite node, the
process can be repeated: the leaves of the composite node can
be optimally assigned to eight bins, the leaves of that composite
node can be optimally assigned to 16 bins, and so forth. In fact,
there is no particular reason why the number of nodes at each
layer must grow in powers of two. On the contrary, preliminary
results suggest that it is advantageous to expand the trellis as
quickly as possible at the top (e.g., split the root node N ways),
and then expand slowly near the bottom. Unfortunately, since
layer by layer, the procedure is still greedy, there is no guarantee
that such a trellis structure will outperform a tree. Moreover,

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES

optimal pruning [7], [58] becomes impossible.
Nevertheless, trellises are richer in expressive power than

trees. In a trellis, each node t has an interpretation as the
disjunction (union) of a conjunction (intersection) of events, e.g.,
t = (tl n {X, E A,}) u (tz n {XZ E A*}). In turn, each node
tl and t2 has a similar interpretation. In contrast, each node
t of a decision tree has a conceptual interpretation of only a
conjunction of events, e.g., t = tl n {Xl E A,}, where tl
has a similar interpretation. Thus the nodes of a decision trellis,
generally speaking, organize themselves into higher conceptual
representations than do the nodes of a decision tree. Consequently
decision trellises may be more useful than decision trees in
discovering the structure underlying a classification or knowledge
representation problem.

VI. SUMMARY AND CONCLUSION

W e presented a solution to the problem of finding the best
K-ary partition of the outcomes of a discrete random feature
variable, when the number of outcomes N is too large to consider
an exhaustive search through the power set of possible partitions.
In the Introduction we showed how finding such an optimal
partition is required in the design of classification and regression
trees, at each node and for each feature variable. In Section II
we developed the framework for our solution, by generalizing
Kullback’s information divergence to divergences of arbitrary
loss functions, and by showing their close connection to the
impurity measures of Breiman et al. In Section III we presented
our main results: a theorem on the necessary form of an optimal
partition, and an iterative algorithm based on the theorem for
finding a locally optimal partition in time per iteration linear
in the size of the feature alphabet. In Section IV we applied the
algorithm to a problem with a large feature alphabet, specifically,
the problem of letter-to-sound conversion. In Section V we
suggested further applications of the algorithm, including the
design of variable combinations, surrogate splits, composite
nodes, and directed acyclic decision graphs. The Appendix details
impurity and divergence measures corresponding to a number
of common loss functions, and shows how to smooth empirical
probability distributions in the event that the training data are
sparse.

The optimal partitioning theorem of Section III states that a
necessary condition for a partition to minimize the expected
loss is that its bins satisfy a nearest neighbor condition with
their centroids, where the “distance” measure used for computing
both the nearest neighbors and the centroids is the divergence
corresponding to the given loss function. This theorem gen-
eralizes the corresponding Theorem 4.5 of Breiman et al. in
several ways. First, whereas Breiman et al. show that a threshold
condition is satisfied by some optimal partition, we prove that the
threshold condition is actually necessary, and hence is satisfied by
every optimal partition. Second, whereas Breiman et al. restrict
themselves to binary partitions, we handle partitions with an
arbitrary number of bins K. This is critical in the design of more
complex decision graphs. Finally, and most importantly, whereas
Breiman et al. restrict themselves to either binary classification
or univariable regression, we handle arbitrary numbers of classes
or arbitrary numbers of regression variables, M. The threshold
of Breiman et al. thus generalizes to an M - 1 dimensional
surface in an A4 dimensional space. For a number of common
loss functions, including the squared error and the log likelihood,
this surface is a simple hyperplane.

The algorithm is a K-means like clustering algorithm, which
follows from the constructive proof of the theorem, and which,
naturally, uses divergence in place of Euclidean distance. When
the partitions are determined by hyperplanes, the computational
complexity of the algorithm is only O(MKN) per iteration.
Since the algorithm converges quickly, apparently with little de-
pendence on M, N, or K, the overall computational complexity
of the algorithm is linear in M, N, and K. This contrasts sharply
with either the O(MKN) complexity of an exhaustive search, or
the O(N”) complexity of the Burshtein et al. algorithm, which
is applicable when K = 2 and when the loss function has a
special form.

The reduction in computational complexity from exponential
to linear in N and M permits the use of classification or regres-
sion trees in many problems where they would not otherwise be
feasible. A good example of such a problem is letter-to-sound
conversion, which was discussed in Section IV. In that problem,
each feature is a character from a set of N = 29 possible
letters. Whereas a computational complexity on the order of 2” is
infeasible, a computational complexity on the order of 29 is not
only feasible; it is attractive. Moreover, the larger the number
of letters N, the better behaved the K-means algorithm, since
the expected loss as a function of the centroids becomes more
“continuous,” and the fixed points of the algorithm are unlikely
to be degenerate. Thus our partitioning algorithm, though not
guaranteed to find the optimal partition, complements the method
of exhaustive search very nicely. For small N, exhaustive search
can be used; for large N, the partitioning algorithm can be used.

How large N can be in practice depends primarily on the
amount of training data available. Consider trying to use a
decision tree to predict the next word in a sentence, based on
the J previous words. The feature vector would consist of J
categorical variables, with each variable having an alphabet size
of N, the number of words in the vocabulary. The number of
classes M also equals N. If N = 10 000, say, then determining a
locally optimal partition with our algorithm amounts to clustering
ten thousand lOOOO-dimensional histograms into two bins. The
amount of data necessary to accurately estimate such histograms
is well over one hundred million samples, which is nearly
impossible to collect even with today’s computer technology. For
these problems, and even for much smaller problems such as the
text-to-phoneme problem, “smoothing” of the probability density
estimates is required, especially if the log likelihood loss function
is used. (The log likelihood loss function does not permit any
zeros in the probability densities.) W e use a smoothing procedure
described in Appendix B, which is consistent with minimizing
the log likelihood loss.

Finally, it should be mentioned that since the partitioning
algorithm is essentially just a clustering algorithm, the vast body
of literature on clustering algorithms may be used to improve the
algorithm’s speed or performance. For example, a hierarchical
clustering technique used in conjunction with Ic-d trees may be
20-50 times faster than straightforward techniques with little
loss in performance [59].

APPENDIX A
SOME COMMON DIVERGENCES

Weighted Squared Error (Regression)
Let y and 5 be real A&-dimensional vectors, and let W be a

real nonnegative definite M x M matrix. The weighted squared

IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

error loss function is defined

C(Y, G) = (Y - L)‘W(Y - il),

where y’ denotes the transpose of y. The centroid of an event t
is the M-dimensional vector

p(t) = argmjnE[(Y - c)‘IV(Y -G) 1 t]

= -w I tl,
and the impurity is the minimum value

i(t) = Jq(Y - P(t))‘W(y - P(t)) I t]
= E[Y’W Y 1 t] - p’(t)Wp(t).

The divergence of G from p(t) is given by

d(&$) = E[(Y - $)‘W(Y - 0) 1 t] - i(t)

= (P(t) - ~)‘W(FL(t) - 81,

which is itself a weighted squared error. When W is the identity
matrix and t is the whole space, we have the familiar relation

-w- - ia” = -w - /412 + IlP - w

Weighted Gini Index of Diversity (Classification)
Let y be an M-dimensional class indicator vector, let Q be

an M-dimensional class probability vector, and let W be a
real nonnegative definite M x M matrix. As with the weighted
squared error, the loss function is defined

!(Y, ti> = (Y - G)‘W(Y - 51,

and the centroid of an event t, which minimizes the expected
loss E[!(y , 5) / t], is the M-dimensional probability vector

P(t) = -w I tl.

The impurity

i(t) = Jq(Y - P(t))‘w(y - P(t)) I t]
= E[Y’W Y 1 t] - p’(t)Wp(t)

is known as the weighted Gini index of diversity, which reduces
to

i(t) = 1 - c #U; (t)
m

in the unweighted case and still further to

in the unweighted two-class case [7]. The divergence of y from
p(t) is given by

d(t, G) = E[(Y - j.j)‘W(Y - 6) 1 t] - i(t)

= (P(t) - ti)‘W Let) - 61,

which is just a weighted squared error between probability mass
functions.

Information Divergence (Classification)

Let y be an M-dimensional class indicator vector, and let
6 be an M-dimensional class probability vector with nonzero
components. The log likelihood loss function is defined

which is the approximate number of bits required to represent
the class indicated by y using a Huffman code matched to the
probability vector $. The expected loss given event t is the
average number of bits required to represent the class indicated
by Y,

JqW,i?) I tI= -~/&&)log.ilm,
m

which is minimized by the centroid p(t) = E[Y I t], the true
probability mass function for Y given t. The impurity at node t
is the value of the expected loss at the centroid,

which is just the entropy H(Y I t). The divergence of y from
p(t) is the average excess loss,

qt, L) = - ~&z(t) logdm - i(t)

or the relative entropy between
arbitrary distribution 3.

the true distribution p(t) and the

Weighted Misclassification Error (Classification)
Let y be an M-dimensional class indicator vector, let G be an

M-dimensional class probability vector, and let W = (wmn) be
a real M x M matrix whose mnth entry is the cost of represent-
ing the mth class by the nth class. If the true class distribution
were indeed 6, then the nth component of the row vector $ W
would be the expected cost of representing Y by the nth class.
The best class to represent Y would then be

The weighted misclassification error can now be defined

[(Y, $1 = c YmWWnz;L* >
m

which is the cost of representing the class indicated by y by
the class that minimizes the expected cost assuming the class
distribution is c. The expected loss at node t is thus given by

WY, 6) I 4 = c PUm(Qwmi* >
m

where p(t) = E[Y / t] is the true class distribution at node t, and
it is minimized, by the definition of C*.‘, by $ = p(t), showing that
p(t) is indeed a centroid of node t. Note that the centroid is very
nonunique. Any probability vector 6 is a centroid provided that
the ?i* minimizing C, GmwW,, agrees with the rz* minimizing
I&, PL, (ewnn. The impurity i(t) = E[C(Y, p(t) I t)] is just the
mmrmum possible expected loss if Y must be represented by just

I

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES 351

one class, and the divergence d(t, e) = E[1(Y, 6) I t] - i(t) is
just the excess expected loss when the class used to represent Y
is chosen as if fi were the distribution of Y.

The loss between y and G can now be defined (if it exists) by

In the unweighted case (w,, = 0 if m = n and w,, = 1
if m # n), CL; is the most probable class according to the
probability vector 3. Thus !!(Y, c) = 0 if Y indicates class
C* and C(Y, a) = 1 otherwise. The expected value of this
loss is equal to the probability of error when ti* is used to
predict the class. This probability of error is minimized when
n ^* = n*, where n* is the most probable class according to
p(t) = Py(. 1 t). Th e impurity is thus the probability of error
when ti* = n*.

C(Y, 3) =
J

py(z) hdllpdz)) dz,

where p, and pti are the densities of PV and PG.
If y is replaced by a random vector, say Y, jointly distributed

with 2, PV becomes a conditional distribution of Z given
{Y = y}. A marginal of 2, say P, is induced by mixing the
conditionals PV by the distribution of Y, which we assume is
conditioned on node t. The expected loss can then be written

E[W,ii) I tl = E m(z) lodllpdz)) dz 1
I i(t) = 1 - &(n* I t),

and the divergence is the increase in probability of error when
h’ # n*,

=
I

F(z) hdlldz)) dz> (20)

d(t,G) = Py(n* I t) - Py(ti* It).

Min imum Relative Entropy (Regression)

where p is the density of p. Remarkably, the expected loss is
minimized by 5 = p(t), where p(t) = E[Y I t], since by
substituting (19) into (20) and taking partial derivatives with
respect to 7, we obtain

Let y and D be arbitrary real M-dimensional vectors. Given an
M-dimensional vector function f on a random variable 2 with
reference measure R, we can define the loss function e(y, 6) in

& J?i(z){log J r(w)es’f(w) dw - logr(z) - r/f(z)} dz

terms of minimum relative entropies, as follows. Define = J f(z)r(~)e”‘f’~’ dz
J r(z)ev’f(‘) dz - F(z)f(z) dz

pv = argmin { W Q II RI : Y = J f(z) dQ(z)} J = il - ,447
as the minimum relative entropy distribution between the refer- which equals zero when @ = p(t). Hence p(t) = E[Y] t] is the
ence measure R and the set of probability measures Q satisfying centroid of t, and i(t) = SF(z) log (l/p,(z)) dz is its impurity.
the expectation constraint y = s f(z) dQ(z). If no probability The above development is only formal, because the loss
measures satisfy this constraint, then PY is undefined. The function is generally not integrable, and hence Fubini’s theorem
relative entropy (also known as the Kullback-Leibler distance, cannot be applied to the exchange of the expectation with the
discrimination information, and information divergence) between integral in the cross entropy (20). However, the divergence, or
R and Q, when Q is absolutely continuous with respect to R, the difference between the expected loss and the impurity, is
is defined well defined,

waIR)=Jlog($)dQ(z) 46 6) = J 32) lodllpdz)) dz - i(t)

= J q(z);og i@ dz, =
r(z)

where q(z) and r(z) are densities of Q and R with respect to
some other reference measure, perhaps Lebesgue measure. (If
R itself is Lebesgue measure, then PY becomes the max imum
entropy distribution satisfying the expectation constraint.) If Q
is not absolutely continuous with respect to R, then D(Q I] R)
is defined to be infinite.

Likewise, let

Pe = arg rnin { D(Q II R) : 6 = J f(z) dQ(z)}

be the minimum relative entropy distribution between R and the
set of probability measures satisfying 6 = s f(z) dQ(z). As
can be seen by solving the variational equations, the minimum
relative entropy distribution has a density of the form

r(z) exp{ rl&f(z)}
"(') = Jr(z) exp{r&f(z)} dz’ (19)

where qr, is an M-dimensional Lagrange multiplier chosen to
satisfy 6 = JpQ(z)f(z) dz, and 5 is the transpose of vti.

J ~(z)log(P,(z)lP~(z))dz

= ~,(z)log(~,(z)l~~(z))dz, J
and the above arguments can be applied rigorously in this case
[50], [60]. Note that the divergence is just the relative entropy
between P,, and PG, which are in turn the minimum relative
entropy distributions between the reference measure R and the
constraint sets {Q : p(t) = St(z) dQ(z)} and {Q : 6 =
S f(z) dQ(z)l.

Itakura-Saito Distortion (Regression)

Lety = (r,(O),r,(l),... ,r,(M)) andi3 = (r;(O),r;(l),+..,
ri (M)) be Mth order autocorrelations of a discrete time sta-
tionary random process 2 = {Z,}, under two different process
measures. Since y and c are expectations of the same vec-
tor function f(r) = (zi, zgzl,. . . , zOzM) under two different
measures, the loss between them can be measured in terms of
minimum relative entropy with respect to a reference stationary

352 IEEE TRANSACTIONS ON PATI’ERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

process measure R. Specifically, let R” be the restriction of R
to 2” = (20, Z-1, . ’ ’ ,Zn-r), n > M, and let

P; = arg mirin { D(Q” II ~“1: Y = 1 fv) dvw}

be the minimum relative entropy distribution with respect to R”
satisfying y = s f(.~~) dP,“(z”). Define Pi similarly. Then
the loss, expected loss, centroid, impurity, and divergence are
defined as usual, for example,

CL(t) = w I tl
and

d”(t,i2) = D(P,;t, /I P;).
It can be shown [61], [60] that if R is a zero-

mean Gaussian autoregressive process, the per letter relative
entropy D(P,” 11 Pi)/ n converges to one-half the Itakura-Saito
distortion

D(P,” II P,P)/n -+ dIs(S,, SQ)/2

= St *s,(e) s,(e) S,(Q) - log S,(6)

between the power spectral densities S,(e) and S*(e) of the least
squares Mth order linear predictive models with autocorrelation
coefficients y and Q, respectively. It turns out that this is easy
to compute [62], [34]:

dIs(S,,&,) = F -
62

log - - 1, u2

where W is the Mth order autocorrelation matrix for a stationary
process with Mth order autocorrelation vector y, &-2 is the
minimum Mth order linear prediction error for that process, a
is the vector of optimal Mth order linear prediction coefficients
for a process with Mth order autocorrelation vector 6, and u2
is the gain for that process (assuming a0 = 1). These quantities
may be obtained by a standard LPC analysis, using Levinson’s
algorithm, for example [63].

W e may now define a new divergence function based on the
above limit:

44 L) = dIs (Qtj, So).
Clearly, this divergence is minimized by
since p(t) minimizes (21) for every 12.

5 = ,4t), as desired,

APPENDIX B
SMOOTHING EMPIRICAL DISTRIBUTIONS

The log likelihood loss function C(y, 6) requires that all
components in the probability vector 6 be nonzero. Therefore,
if the information divergence is used in the partitioning algo-
rithm, the bin centroids must be “smoothed” to eliminate zeros.
Nominally, each bin centroid p(tk) is the average of probability
vectors P(Z), z E Ak, and each P(Z) is in turn the empirical
probability mass function (pmf) of Y given X = 2. Thus
k(tk) is nominally the empirical pmf of Y given X E Ak.
Empirical pmfs, or equivalently histograms, typically have many
zeros, particularly if the number of classes M is large and
the data are limited. There are a number of methods in the
literature for “smoothing” empirical pmfs, which try to estimate
the probabilities of unobserved events. These include Turing’s

formula [64] and Laplace’s estimator [65]. W e use another
approach, similar to that of [9], which is consistent with our
objective of finding the centroid that minimizes the average
information divergence.

Precisely, suppose we are trying to estimate the centroids p(tO)
and p(tl), where to and tl are children of parent node t. Using the
parent’s centroid b(t) as a prior, which we assume has already
been likewise smoothed and hence contains no zeros, we choose
as the smoothed centroid of each child the convex combination

G(b) = XCL(b) + (1 - X&(t),

where &tlc) is the unsmoothed centroid of tk and X E [0, 1) is
chosen to minimize the total log likelihood loss over the entire
data set,

c qy, 2 Ati, + (1 - Gw) 1 (22)

where for each sample (x1, y,) in the set with x3 E Ak, $.,
is the unsmoothed centroid of the kth bin, computed as if the
jth sample were not in the training set. (This is the “leave-one-
out” estimate of the empirical pmf of Y given X E Ak.) This
jth sample is used instead in the “test” set. Summing the losses
over the “test” set constructed in this way, we obtain (22), for
a given X.

W e find the optimal X in (22) by taking the derivative and using
an iterative root finding algorithm. Conveniently, this can be done
without going through the training set on every iteration, because
a few histograms sufficiently summarize the data. Specifically, let
P(y) be the smoothed prior b(t), let P,(y) be the “leave-one-
out” estimate cl, and let yj be the class of the jth sample. The
derivative of (22) with respect to X becomes

-c~log[xq,(Y,)+(l-x)B(Y,)]
J

c
C(Y,) - RYJ =-

J Xp,(Y,) + Cl- JmYJ
(23)

W e now split the sum according to whether xJ E A0 or A,, and
treat each component separately. Let h(y) be the histogram of
all L samples in bin Ic. Then P,(-y,) = [h(yJ) - l]/(L - 1). Let
A(y) = [h(y) - l]/(L - 1) - P(y). Then the k component of
(23) becomes

which is easily computed at every iteration.

ACKNOWLEDGMENT

The author wishes to thank the following people for their
contributions to this work: R. Gray of Stanford University, M.
Riley of AT&T Bell Laboratories, D. Pregibon of AT&T Bell
Laboratories, D. Nahamoo of IBM Watson Research Laborato-
ries, J. Deken of the National Science Foundation, G. Groner of
Speech Plus, Inc., E. Dorsey, formerly of Speech Plus, Inc., and
P. Marks, formerly of Telesensory Systems, Inc.

I

CHOU: PARTITIONING FOR CLASSIFICATION AND REGRESSION TREES 353

REFERENCES 1271 A. Baves, “A dynamic programming algorithm to optimise decision

VI J. E. G. Henrichon and K. S. Fu, “A nonparametric partitioning
procedure for pattern classification,” IEEE Trans. Comuut.. vol.
k-18, pp. 604-624, May 1969.

[2] W. S. Meisel and D.A. Michalopoulos, “A partitioning algorithm
with application in pattern classification and the optimization of
decision trees,” IEEE Trans. Comput., vol. C-22, pp. 93-103, Jan.
1973.

[3] H. J. Payne and W.S. Meisel, “An algorithm for constructing
optimal binary decision trees,” IEEE Trans. Comput., vol. C-26,
pp. 905-916, Sept. 1977.

[4] P. H. Swain and H. Hauska, “The decision tree classifier: de-
sign and potential,” IEEE Trans. Geosci. Electron., vol. GE-15,
pp. 142-147, July 1977.

[5] I.K. Sethi and B. Chatterjee, “Efficient decision tree design for
discrete variable pattern recognition problems,” Pattern Recog.,
vol. 9, pp. 197-206, 1977.

[6] I. K. Sethi and G. P. R. Sarvarayudu, “Hierarchical classifier design
using mutual information,” IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-4, pp. 441-445, July 1982.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and Regression Trees (The Wadsworth Statistics/Probability
Series). Belmont, CA: Wadsworth, 1984.

[8] J. M. Lucassen and R.L. Mercer, “An information theoretic ap-
proach to the automatic determination of phonemic baseforms,”
in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, San
Diego, CA, IEEE, Mar. 1984, pp. 42.5.1-42.5.4.

[9] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “A tree-
based statistical language model for natural language speech recog-
nition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37,
pp. 1001-1008, July 1989.

[lo] P.A. Chou, “Applications of information theory to pattern recog-
nition and the design of decision trees and trellises,” Ph.D. disser-
tation, Stanford Univ., Stanford, CA, June 1988.

[111 Y. Brandman, “Spectral lower-bound techniques for logic circuits,”
Comput. Syst. Lab., Stanford, CA, Tech. Rep. CSL-TR-87-325,
Mar. 1987.

[12] R. W. Payne and D.A. Preece, “Identification keys and diagnostic
tables: A review,” J. Roy. Stat. Sot. A., vol. 143, pp. 253-292,
1980.

[13] E. B. Hunt, J. Marin, and P. T. Stone, Experiments in Induction.
New York: Academic, 1966.

[141 J. R. Quinlan, “Induction over large data bases,” Heuristic Program-
ming Project, Stanford Univ., T&h. Rep. HPP-79-14, 1979.-

[15] -, “Induction of decision trees,” Machine Learning, vol. 1,

1161
no. 1, pp. 81-106, 1986.
-, “The effect of noise on conceot learninn.” in Machine Learn-

- 1

ing-An Artificial Intelligence Appioach, ~2: II, R. S. Michalski,
J.G. Carbonell, and T.M. Mitchell, Eds. Los Altos, CA: Kauf-
mann, 1986, ch. 6, pp. 149-166.

[17] J. Cheng, U. M. Fayyad, K.B. Irani, and Z. Qian, “Improved
decision trees: A generalized version of ID3,” in Proc. Fifth Int.
Conf Machine Learning, Ann Arbor, MI, June 1988, pp. lOO- 107.

[18] J. R. Quinlan and R. L. Rivest, “Inferring decision trees using the
minimum description length principle,” Inform. Computat., vol 80,
pp. 227-248, 1989.

[19] P. Clark and T. Niblett, “The CN2 induction algorithm,” Machine
Learning, vol. 3, PD. 261-283, 1989.

[20] J. Ming&s, “Empiiical comparison of selection measures for de-
cision tree induction,” Machine Learning, vol. 3, pp. 319-342,
1989.

1211 M. Montalbano, “Tables, flow charts, and program logic,” IBM
Syst. J., pp. 51-63, Sept. 1962.

(221 J. Egler, “A procedure for converting logic table conditions into
an efficient sequence of test instructions,” Commun. ACM, vol. 6,
pp. 510-514, Sept. 1963.

[23] S. L. Pollack, “Conversion of limited-entry decision tables to com-
puter programs,” Commun. ACM, vol. 11, pp. 677-682, Nov.
1965.

[24] L. T. Reinwald and R. M. Soland, “Conversion of limited-entry
decision tables to optimal computer programs II: Minimum storage
requirement,” J. ACM, vol. 14, pp. 742-755, Oct. 1967.

[25] D.E. Knuth, “Optimal binary search trees,” Acta Inform., vol. 1,
pp. 14-25, 1971.

[26] K. Shwayder, “Conversion of limited-entry decision tables to com-
puter programs-A proposed modification to Pollack’s algorithm,”
Commun. ACM, vol. 14, pp. 69-73, Feb. 1971.

table code,” Australian Cornput. J.,-voi. 5, pp. 77-79, May 1973.
1281 S. Ganaoathv and V. Raiamaran, “Information theorv apnlied to

. 1

L 1 I ,

the conversion of decision tables to computer programs,” 6mmun.
ACM, vol. 16, pp. 532-539, Sept. 1973. . -

1291 H. Schumacher and K.C. Sevcik, “The svnthetic approach to
. 1

decision table conversion,” Commun. ACM, vol. 19, pp: 343-351,
June 1976.

[30] A. Martelli and U. Montanari, “Optimizing decision trees
through heuristically guided search,” Commun. ACM, vol. 21,
pp. 1025-1039, Dec. 1978.

[31] C. R. P. Hartmann, P. K. Varshney, K. G. Mehrotra, and C. L. Ger-
berich, “Application of information theory to the construction of
efficient decision trees,” IEEE Trans. Inform. Theory, vol. IT-28,
pp. 565-577, July 1982.

[32] J.A. Morgan and J.A. Sonquist, “Problems in the analysis of
survey data. and a monosal.” J. Amer. Statist. Assoc., vol. 58.
pp. 4%434, 1963. L *

1331 A. Fieldinu. “Binarv segmentation: The automatic interaction de-
L 1 Y, ,

tector and related techmques for exploring data structure,” in
Exploring Data Structures, vol. I, C. A. O’Muircheartaigh and C.
Payne, Eds. London: Wiley, 1977, ch. 8, pp. 221-257.

[34] A. Buzo, A. H. Gray Jr., R.M. Gray, and J. D. Markel, “Speech
coding based upon vector quantization,” IEEE Trans. Acoust.,
Speech, Signa/ Processing, vol. ASSP-28, pp. 562-574, Oct. 1980.

[35] D. Y. Wong, B. H. Juang, and A. H. Gray Jr., “An 800 bit/s vector
quantization LPC vocoder,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP30, DD. 770-780. Oct. 1982.

[36] P. A. Chou; T. Lookabaugh’and R. M. Gray, “Optimal pruning with
annlications to tree structured source coding and modeling.” IEEE
cans. Inform. Theory, vol. 35, pp. 299-3fi, Mar. 1989.“’

[37] L. Hyafil and R.L. Rivest, “Constructing optimal binary decision
trees is NP-complete,” Inform. Processing Lett., vol. 5, pp. 15- 17,
May 1976.

[38] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: Freeman,
1979.

1391 W. D. Fisher. “On erouoing for maximum homoueneitv.” J. Amer. . >
Statist. Assoc., vol.-53,‘ppy789-798, Dec. 19.58: ”

1401 G. H. Ball and D. J. Hall. “A clusterine techniaue for summarizing
L 1

multivariate data,” Behavioral Sci., yol. 12, ‘pp. 153-155, Ma:
1967.

[41] E. W. Forgey, “Cluster analysis of multivariate data: efficiency
versus interpretability of classifications,” Biometrics, vol. 21, no. 3,
p. 768, 1965.

[42] J.B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Mathemat-
ical Statistics and Probability, vol. 1. Berkelky,.Ck: University
of California Press. 1967. DD. 281-297.

[43] R. 0. Duda and P. E. Hart, ‘eattern Classification and Scene Anal-
ysis. New York: Wiley, 1973.

1441 A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. En- _ _
glewood Cliffs, NJ: Prentice-Hall, 1988.

1451 S.P. Llovd, “Least squares uuantization in PCM.” IEEE Trans. _ -
Inform. Theory, vol. IT-28, pp. 129-136, Mar. 1982; previously
an unpublished Bell Laboratories Tech. Note, 1957.

[46] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quan-
tizer design,” IEEE Trans. Commun., vol. COM-28, pp. 84-95,
Jan. 1980.

[47] D. Burshtein, V. D. Pietra, D. Kanevsky, and A. Nadas, “A splitting
theorem for tree construction,” IBM, Yorktown Heights, NY, Tech.
Rep. RC 14754 (#66136), July 1989.

[48] -, “Minimum impurity partitions,” Ann. Stat., Aug. 1989,
submitted for publication.

[49] P. Chou, “Using decision trees for noiseless compression,” in
Proc. Int. Symp. Inform. Theory, IEEE, San Diego, CA, Jan. 1990,
abstract only.

[50] S. Kullback, Information Theory and Statistics. New York: Wiley,
1959; republished by Dover, 1968.

[51] B. Efron, “Regression and ANOVA with zero-one data:
Measures of residual variation,” J. Amer. Statist. Assoc., vol. 73,
pp. 113-121, Mar. 1978.

[52] T. M. Cover, “Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition,” IEEE
Trans. Electron. Comput., vol. EC-14, pp. 326-334, 1965.

[53] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn
to pronounce English text,” Complex Syst., vol. 1, pp. 144-168,
1987.

I

354 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 4, APRIL 1991

1541 R. A. Becker. J. M. Chambers. and A. R. Wilks. The New S Lan- . >
guage. Pacific Grove, CA: Wadsworth & Brooks, 1988.

[55] M. H. Becker, L. A. Clark, and D. Pregibon, “Tree-based models,”
in Statistical Sojiware in S. Pacific Grove, CA: Wadsworth, 1989.

[56] R. M. Gray, “Applications of information theory to pattern recog-
nition and the design of decision tree classifiers,” proposal to NSF
Division of Information Science and Technology, IST-8509860,
Dec. 1985.

[57] S.M. Weiss, R.S. Galen, and P.V. Tadepall i , “Optimizing the
predictive value of diagnostic decision rules,” in Proc. Nat. Conf:
Artificial Intelligence, AAAl, Seattle, WA, 1987, pp. 521-526.

1581 P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained
vector quantization,” IEEE Trans. Acoust., &eech. Signal Process-

- -
1591

ing, vol. 37, pp. 31-42, Jan. 1989.
W. Equitz, “Fast algorithms for vector quantization nicture coding.”
in P&c. Int. Conf: Acoustics, Speech; Signal Pr&essing, IEEE,
Dallas, TX, Apr. 1987, pp. 18.1.1-18.1.4.

[60] J. E. Shore and R. M. Gray, “Min imum cross-entropy pattern clas-
sification and cluster analysis,” IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-4, pp. ll- 17, Jan. 1982.

[61] R. M. Gray, A. H. Gray Jr., G. Rebolledo, and J.E. Shore, “Rate-
distortion speech coding with a min imum discrimination informa-
tion distortion measure,” IEEE Trans. Inform. Theory, vol. IT-27,
pp. 708-721, Nov. 1981.

[62] R.M. Gray, A. Buzo, A.H. Gray, and Y. Matsuyama, “Distortion
measures for speech processing,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-28, pp. 367-376, Aug. 1980.

[63] J. D. Markel and A. H. Gray, Linear Prediction of Speech (Com-
municat ion and Cybernetics).

[64] A. Nadas,
New York: Springer-Verlag, 1976.

“On Turing’s formula for word probabilities,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33,
pp. 1414-1416, Dec. 1985.

[65] J. Rissanen, “Complexity of strings in the class of Markov pro-
cesses,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 526-532, July
1986.

Philip A. Chou (S’82-M’87) was born in Stam-
ford, CT, on April 17, 1958. He received the
B.S.E. degree from Princeton University, Prince-
ton, NJ, in 1980 and the M.S. degree from the
University of California, Berkeley, in 1983, both
in electrical engineering and computer science,
and the Ph.D. degree in electrical engineer-
ing from Stanford University, Stanford, CA, in
1988.

Since 1977, he has worked for IBM, Bell Lab-
oratories, Princeton Plasma Physics Lab, Tele-

sensory Systems, Speech Plus, Hughes, and Xerox, where he was
involved variously in office automation, motion estimation in television,
optical character recognition, LPC speech compression and synthesis,
text-to-speech synthesis by rule, compression of digitized terrain, and
speech and document recognition. His research interests are pattern
recognition, data compression, and speech and image processing. Cur-
rently, he is with the Xerox Palo Alto Research Center, Palo Alto, CA.

Dr. Chou is a member of Phi Beta Kappa, Tau Beta Pi, S igma Xi,
and the IEEE Computer, Information Theory, and Acoustics, Speech,
and Signal Processing societies.

