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Optimal Partitioning for 
C lassification and Regression Trees 

Philip A. Chou, Member, IEEE 

Abstract-In designing a decision tree for classification or regression, 
one selects at each node a feature to be tested, and partitions the range 
of that feature into a small number of bins, each bin corresponding to a 
child of the node. When the feature’s range is discrete with N unordered 
outcomes, the optimal partition, that is, the partition minimizing an 
expected loss, is usually found by an exhaustive search through all possible 
partitions. Since the number of possible partitions grows exponentially 
in N, this approach is impractical when N is larger than about 10 or 
20. In this paper, we present an iterative algorithm that finds a locally 
optimal partition for an arbitrary loss function, in time linear in N for 
each iteration. The algorithm is a K-means like clustering algorithm that 
uses as its distance measure a generalization of Kullback’s information 
divergence. Moreover, we prove that the globally optimal partition must 
satisfy a nearest neighbor condition using divergence as the distance 
measure. These results generalize similar results of Breiman et al. to an 
arbitrary number of classes or regression variables and to an arbitrary 
number of bins. We also provide experimental results on a text-to- 
speech example, and we suggest additional applications of the algorithm, 
including the design of variable combinations, surrogate splits, composite 
nodes, and decision graphs. 

Index Terms-Clustering, decision trees, information divergence, text- 
to-speech. 

I. INTRODUCTION 

A CLASSIFICATION or regression tree is a binary tree, not 
necessarily balanced, that given an input X produces an 

output ? that approximates some random variable of interest 
Y, stochastically related to X. This deterministic mapping is 
accomplished as follows. Associated with each internal node of 
the tree is a binary function of the input X, and associated with 
each external node is a specific output label Y. Starting at the root 
node, the binary function is used to test the given input X. If the 
result is “O ”, the left branch is followed; if the result is “l”, the 
right branch is followed. The process is repeated until reaching 
an external node, or leaf, at which point the associated label Y is 
output. The tree is designed to minimize (at least approximately) 
the expected loss between Y and Y. 

As an example, consider the classification tree of Fig. 1 for 
an optical character recognition (OCR) problem. With Y a letter 
in {“a”, . . . , “z”}, and X a feature vector (X,, . . . , X8) whose 
components, shown in Table I, are derived from a noisy image 
of Y, this tree attempts to classify X by testing one component 
at each node. The root node, for example, tests component X8. 
If X8 E { 1,3,7}, then the left branch from the root is followed, 
otherwise the right branch is followed. The image of a character 
with feature vector (1, 1, 1, 1, 1, 1,2,7) would be mapped into 
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TABLE I 
FEATURES FOR OCR EXAMPLE 

Feature Possible Outcomes 

Xr (north concavities) 

Xz (south concavities) 

X3 (northwest concavities) 

X4 (northeast concavities) 

X5 (southwest concavities) 

Xs (southeast concavities) 

X7 (vertical bars) 

Xs (horizontal lines and loops) 

1 no concavity 
2 shallow concavity 
3 deep concavity 
4 two concavities 
5 three or more concavities 
1 no concavity 
2 shallow concavity 
3 deep concavity 
4 two concavities 
5 three or more concavities 
1 no concavity 
2 northwest concavity 
1 no concavity 
2 northeast concavity 
1 no concavity 
2 southwest concavity 
1 no concavity 
2 southeast concavity 
1 no vertical bars 
2 one narrow vertical bar 
3 two vertical bars 
4 three vertical bars 
5 four vertical bars 
6 five or more vertical bars 
7 one wide bar on the right 
8 one wide bar on the left 
1 simple line 
2 complicated line 
3 simple loop 
4 complicated loop 
5 exactly two loops 
6 three or more loops 
7 two or more components 

Y = “i”, based on the fact that X8 = 7 = “two or more 
components” and X6 = 1 = “no southeast concavity.” Note that 
many different feature vectors may map to the same leaf, and that 
many different leaves may have the same label. Furthermore, 
some classes may not be represented by any label. The tree 
is designed so that the probability of error, or the expected 
loss between Y and Y’, is low, where the loss here is the 
misclassification cost: 1 if Y # Y and 0 otherwise. 

The difference between a classification tree and a regression 
tree is that in a classification tree, Y is “categorical” (i.e., takes 
values in a discrete set), whereas in a regression tree, Y is 
“continuous” (i.e., real-valued) and can be either a scalar or 
vector. Classification tree performance is usually given in terms 
of probability of error; regression tree performance is usually 
given in terms of mean squared error. In general, performance is 
measured by expected loss, for some appropriate loss function. 
Classification trees, also called decision trees in the literature, 
have been well-studied, with applications including pattern recog- 
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Fig. 1. Classification tree for OCR example. 
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nition [ l]-[lo], logic design [ 111, taxonomy, questionnaires, and 
diagnostic manuals [12], expert systems, and machine learning 
[13]-[20], and the conversion of decision tables to nested 
“if . . . then . . . else” rules for computer programs [21]-[31]. 
Regression trees have also found applications in a number of 
areas, including least squares regression [32], [33], [7] and vector 
quantization [34] - [36]. 

Due to the inherent computational complexity of construct- 
ing optimal trees (i.e., trees having the minimal expected loss 
for their size) [37], [38], practical procedures for constructing 
trees are almost universally steepest-descent greedy procedures 
that “grow” trees outward from the root. Each step of such a 
procedure operates on a partially grown tree by splitting some 
terminal node into two children, making it a parent node. The 
parent node is assigned a binary test, or function of the input X, 
that among some collection of tests permitted at that node, most 
improves the performance of the new tree. Thus the procedure 
is stepwise optimal. 

In a straightforward version of the growing procedure, an 
exhaustive search through the collection of permissible tests is 
performed at each node. If the collection of tests is large, then 
the run time of the growing procedure is also large. In particular, 
if the feature vector X = (X,, . . . , XJ) includes a categorical 
feature variable X taking values in a finite set A = {x1, . . , x,,,}, 
say, then the collection of permissible tests on X includes the 
tests 

if X E A0 
if X E A, 

for each partition A,,, Al of A (A,, U A, = A and A, n  Al =  0). 
Since the number of such partitions is 2N, the run time of the 
growing procedure is exponential in the size of the alphabet N. 

For small problems, such as the OCR problem in which the 
feature with the largest alphabet has only N = 8 possible 
outcomes, this exponential run time may  not present much 
difficulty. But for larger problems, e.g., an OCR problem in 
which the feature vector also includes the class assigned to 
the previous character, the number of permissible tests at every 
node becomes more than 2”j, and the run time of the growing 
procedure becomes impossibly large. Much larger collections of 
tests are just as easy to imagine. 

For some problems, algorithms for finding optimal partitions 
in linear time (in N) have been discovered. In 1958, for example, 
W . D. Fisher noticed that when Y is real-valued (the scalar 
regression case), the least squares partition A,,, Al of A is 
contiguous, in the sense that 

E[Y ( x  = x] 5 E[Y 1 x  = TiT] 

for all z  E A0 and z E Al [39]. Thus to find the optimal least 
squares partition it suffices to consider only the N - 1 contigu- 
ous partitions, rather than all 2” partitions. 

In 1984, Breiman et al. extended Fisher’s result to the case 
when Y is binary (the two-class case), and to arbitrary convex n 
impurity measures [7, Theorem 4.51. (The relationship between 
impurity measures and loss functions is described in Section 11.) 
These results can be viewed geometrically as follows. If the N 
points E[Y ( X = Z] for z  E A = {xi,. .. ,xE} are plotted 
on the real line, then there is a threshold such that all the Z’S 
corresponding to points below the threshold belong to the optimal 
A0 and all the Z’S corresponding to points above the threshold 
belong to the optimal Al. Therefore it suffices to evaluate each 
of the N - 1 possible thresholds, and choose the partition with 
the best performance. 

In 1988, Chou extended Breiman’s result to arbitrary numbers 
of classes (in the classification case) under the log-likelihood loss 
function, and to vectors of arbitrary length (in the regression case) 
under the squared error loss function [lo]. Briefly, the threshold 
of Breiman et al. was generalized to a hyperplane for these 
cases, and the set of possibly optimal partitions was searched 
in linear time per iteration by an iterative descent algorithm 
formally equivalent to the K-means algorithm [40]-[44] or the 
generalized Lloyd algorithm [45], [46], but using a different 
distance measure depending on the loss function. The results 
were also extended to locally optimal K-ary partitions, K 2 2. 
This led to trees of degree K > 2, and more usefully, to directed 
acyclic decision graphs, called decision trellises. 

The present paper is the journal version of the optimal parti- 
tioning results of [lo]. In addition, the present paper generalizes 
the results of [lo] to arbitrary loss functions, in a unified mathe- 
matical framework, and describes a number of other applications 
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of optimal partitioning within the context of decision tree design. 
The Appendix catalogues some fairly general loss functions. 

Independently, Burshtein et al. generalized the results of [lo] 
in another direction: to arbitrary convex n impurity measures, 
and proposed a polynomial time algorithm based on linear 
programming for finding the globally optimal binary partition 
[47], [48]. Unfortunately their algorithm is exponential in the 
number of classes (in the classification case) or the length of the 
vector (in the regression case). Furthermore it is valid only for 
the binary (K = 2) case. It is, however, guaranteed to find the 
globally optimal partition, whereas the iterative descent algorithm 
is not. 

The present paper unfolds as follows. The next section, 
Section II, develops the relationship between the loss functions 
used to measure tree performance and the measures of node 
impurity used in [7], [47], [48], and introduces the notion of 
divergence, the “distance” to be used in the iterative descent 
algorithm. Section III presents the main theorem-necessary 
conditions on the form of the optimal partition in higher 
dimensions-and proves it constructively. This construction 
leads directly to the iterative descent algorithm, which is also 
presented in Section III. Section IV applies the iterative descent 
algorithm to splitting nodes within the greedy growing algorithm 
during the design of a decision tree for a text-to-speech system. 
Section V suggests further applications of the algorithm in 
decision tree design, including variable combinations, surrogate 
splits, composite nodes, higher order splits, and decision trellises, 
Section VI is a discussion and conclusion. 

II. Loss, IMPURITY, AND DIVERGENCE 

W e  begin with the loss function C(y,$), which measures 
the loss, or cost, incurred by representing the object y  by the 
approximation 3. Typical examples of loss functions are the 
misclassification error 

C(Y>L) =  ‘: 
1  

ify=$ 
ify#$’ 

used in classification, and the squared error 

e(Yle) = IIY - Ll12: 
used in regression. Weighted versions of these also exist. (See 
Appendix A.) W e  do not restrict f to have the same alphabet as y. 
For example, in the M-class case, if y  takes values in { 1, . . , M}  
and 6 is any probability vector 6 = (6(l), . . . ,6(M)), then the 
log likelihood loss function is defined 

e(Y,b) =  - l%li(Y). 

(This can be interpreted as the number of bits required to specify 
y  when using an entropy code matched to fi, and hence is useful 
in designing decision trees for data compression [49].) However, 
we will usually take both y  and G  to be M-dimensional vectors 
(hence the boldface notation). In the case of classification with 
M  classes, y  will be the class indicator vector whose components 
are all “O”, except for the yth component, which is “1”. W e  will 
use the nonbold symbol y  when necessary to represent the index 
of the class in {l,...,M}. 

The particular loss function chosen for a given application 
may  be motivated by any number of things: physical (e.g., 
perceptual) criteria, theoretical properties, standard convention, 
or a combination of these. Selection of the loss function is 
not addressed in this paper. However, a number of special loss 
functions are treated in Appendix A. 

Since a classification or regression tree represents a random 
object Y by a deterministic mapping Y = q(X), say, we can 
measure the performance of the tree by the expected loss, or risk, 

R(s) = -WY> d-v)l. (1) 
Here, of course, we are assuming X and Y are jointly distributed 
random objects on an underlying probability space. In practice, 
the risk (1) is evaluated by taking sample averages. Hence 
validation, or the process of verifying the risk on independent 
data, is an important aspect of tree design. However, validation 
is not our primary concern here. In this paper, we simply design 
with a training sequence of (X, Y) pairs and validate with 
a separate test sequence. (The more sophisticated method of 
cross-validation [7] could also be used.) All probabilities and 
expectations in this paper may  be respectively interpreted as 
sample distributions and sample averages of a training sequence. 

W e  can express the risk (1) as a nested expectation by 
conditioning on the leaves of the tree, as follows. Let T  denote 
the set of nodes in the tree, and take each t E T  to be an event in 
the original probability space. Thus P(t) is the probability that 
node t is reached when X is classified. Let T  & T  denote the 
subset of leaves of T. W e  can see that the set of leaves p forms a 
partition of the sample space. Hence the risk (1) can be rewritten 

R(q) = c  P(t) . -w(Y, ti(G) I 4, 
tti‘ 

(2) 

where c(t) is the output label at leaf t. 
At each node t, the constant output label c(t) that minimizes 

the conditional expected loss E[C(Y, G(t)) 1 t] will be called the 
centroid of t, which we shall denote 

p(t) = argm;lnE[e(Y,G) 1 t]. 

(Here and throughout the paper, arg min, f(x) denotes any Z, 
not necessari ly unique, that minimizes f.) The minimum value 
of this expected loss, 

will be called the impurity of t. With these definitions, it is clear 
from (2) that 

R(s) 2 ‘p(tW. (3) 
tgT 

If the output labels are chosen to be the centroids of their nodes, 
then (3) hold with equality, so that 

(4) 

This is assumed in the sequel. 
Impurity has the following convexity property. Let the node t 

be split into left and right children to and tl. (This corresponds 
to splitting the event t into two events t,, and tl.) Then by the 
definitions of i(t) and p(t), 

i(t) = P(hl I W [W, P(t)) I to] + P(h I q-WY, p(t)) I b] 
2  P(h I t)i(t”) + P(b I t)i(t& (5) 

That is, the average impurity of a node never increases when the 
node splits. Multiplying (5) by P(t), we obtain 

e+(t) L P(t&(to) + P(tlP(tl). 

I 
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Hence we see that the overall r isk (4) of a tree likewise never 
increases when a node splits. Moreover, when a node is split, the 
decrease in the tree’s overall r isk is equal to the decrease in the 
node’s average impurity (times the probability of the node). 

In the greedy growing procedure, at each node we seek the 
split, or binary test of X, that most reduces the overall r isk of 
the tree, i.e., most improves its performance. But by what we 
have just said, this is equivalent to finding the split that most 
reduces the average impurity of the node. 

Breiman et al. [7] and Burshtein et al. [47], [48] use a slightly 
different definition of impurity. They define p(t) to be the 
expected value of Y given t, E[Y 1 t], and they let 4 be an 
arbitrary convex fl functional. Then they define the impurity to 
be i(t) = 4&(t)). Th is will also have the convexity property 
(5), owing to the convexity of 4. As pointed out in [48], such a 
formulation can be used to minimize the risk, or expected loss, 
in those cases where the loss function can be expressed 

l(Y,ti) = lO(Y> 6) + b(Y), (6) 

where &(y, 6) is affine in y. Note that the squared error 
C(Y76) = c, (Ym - 8rd2 satisfies (6), as does the misclassi- 
fication error l(y, 6) = c, (1 - ym)&,, where y  is a class 
indicator vector and B is a class probability vector. (See also 
Appendix A.) However, neither the absolute error c, 1~~ - $, 1 
nor the maximum error max, Iym - &I satisfy (6). In case the 
loss function does satisfy (6), however, the functional 4 may be 
defined 

G)  = min ~o(P, 6). 
Y 

Then, defining p(t) = E[Y I t] and i(t) = #@(t)), the split that 
most reduces the average impurity of a node, also most reduces 
the overall risk. In our work, the special form (6) is not assumed. 

Finally, we introduce the notion of divergence. This is the key 
to formulating the partitioning algorithm as an iterative descent: 
divergence is needed to play the role of the metric. Suppose an 
arbitrary output label 6 is used in place of the centroid p(t). The 
divergence of $ from t (or from p(t)) is defined to be the increase 
in expected loss when 0 is used to represent Y instead of ,~(t): 

46 G)  = -WV’, 9) I tl - WY> p(t)) I tl 
= E[C(Y,9) I t] - i(t). 

Notice that by definition, d(t, 9) 2 0 for all G, with equality if 
6 = p(t) (although ,u(t) is not necessarily unique). 

This corresponds exactly to Kullback’s information divergence 
[50], when the log likelihood loss function is used (hence 
our use of the name “divergence”). However, many other loss 
functions commonly used in classification and regression also 
induce divergences that are easily characterized. These include 
the weighted squared error, the minimum relative entropy, the 
Itakura-Saito distortion, the weighted misclassification error, and 
the weighted Gini criterion. These are catalogued in Appendix A. 

III. OFTIMAL PARTI~ONING 

The greedy growing algorithm for constructing classification 
and regression trees seeks at each node t, and for each categorical 
variable X in the feature vector X = (X1,. . . ,XJ), the test or 
split or partition of X that most reduces the overall r isk of the 
tree. We have seen that this is equivalent to seeking the partition 
that most reduces the average impurity of the node. Finding this 
optimal partition is the partitioning problem. 

C, JY4+(4 

Fig. 2. Two-stage refinement of an 

More formally, let X be a discrete random variable with 
alphabet A = {x1, . ,xN}. Given an event t, the partitioning 

problem is to find a binary partition A”, Al of A that minimizes 
the average impurity, 

I(Ao, Al I t) = P(to I @(to) + P(tt I tMtd> (7) 

where the events to = t n {X E A,} and tl = t n {X E A,} 
partition t according to whether X falls into A0 or its complement 
At. 

One way to view the problem is as a two-stage refinement 
of t, as shown in Fig. 2. We are given the coarsest partition 
of t, t itself, with impurity i(t), and the finest partition of t, 

{Xl,..., zN}, with average impurity C, P(s, I t)i(xn). (Here, 
we are using the letters x1,. . . , ZN to stand for the “atomic” 
events t n {X = z,}, n = 1, e e +, N.) We seek an intermediate 
partition oft, to, tl, or equivalently A,,, Al, with the least possible 
average impurity C,=,,, P(tk 1 t)i(tk). 

The convexity property (5) assures us that the average impurity 
does not increase as the partition is refined. Hence the differences 
in average impurity, A,, AZ, and A,,, shown in Fig. 2, must 
always be nonnegative. Indeed, they may be interpreted as 
average divergences: 

A,, = i(t) - c  p(x, I t)i(xn) 

= c  P(G I t){JYW, P(t)) I 4 - i(L)) 

(8) 

A, = iit) - c  P(tk I t)i(tk) 
k=O,l 

= c P(tk 1 t){E[e(y?p(t)) 1 tkl - i(tk)} 
k=O,l 

and 

= c P(tk I t) d(ik, CL(t)), 
k=O,l 

(9) 

A, = c  P(tk ( t)i(tk) - cp(&, 1 t)i(%) 
k=O,l n 
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k=U,l 

(lo) 

Note that the sum A,, = A, + A, is fixed, and that the aver- 
age impurity (7) can be expressed 

I(Ao, Al 1 t) = i(t) - A, 

= c P(x, I t)i(xn) + AZ. (11) 

Thus minimizing the average impurity of the intermediate parti- 
tion is equivalent to either 

1) maximizing the average divergence Al, or 
2) minimizing the average divergence 02. 

According to (9), maximizing A, corresponds to maximizing the 
weighted sum of divergences from to and ti to the centroid p(t) 
of t. Dually, according to (lo), minimizing A2 corresponds to 
minimizing the weighted sum of divergences from xi,. . . , zN to 
the centroids of their assigned bins, either p(to) or p(tl). 

To see the latter more clearly, let cy : A -+ (0, l} be the 
function that assigns each letter in A to one of the two bins 
A0 or Al, and let /3(.) be the function on (0, 1) that assigns a 
centroid to each bin. That is, for each z E A, let 

a(x) = {; if z E A. 
if z E Al 

and for Ic = 0, 1, let 

P(k) = hL(tk). 

Then, since P(z 1 
A2 (10) becomes 

tk) = 0 whenever x $! Ak, the expression for 

A, = c P(tk 1 t) c p(x 1 tk) d(x.h(tk)) 

k=O.l rC.4, 

= c P(tk 1 t, c p(z 1 tk) ‘%-hP(dz))) (12) 

k=O,l r,(z)=k 

= c P(x I t) 4x, P(dx))). (13) 

Thus, A, is the weighted sum of the divergences from each z to 
the centroid of its assigned bin, either p(O) or p(l). 

These weighted sums of divergences, Ai2, A,, and A,, 
are illustrated in Figs. 3(a), (b), and (c), respectively. Events 
t,tO,tlrxl,‘~., zN are represented by their centroids, p(t), p( to), 
dtl),PL(~l), . ‘. 3 P(XN;)> as points in a vector space. The 
divergences between them are shown as directed arcs. For 
example, d(x,,p(t)) lies on the arc between CL(Q) and p(t). 
Imagine that each centroid has a mass equal to the probability 
of its associated event, e.g., the mass of P(Q) is P(zz I t). 
Then, each divergence is weighted by the mass at its tail, and 
the weighted divergences are summed to obtain the average 
divergences A,, in Fig. 3(a), A, in Fig. 3(b), and AZ in Fig. 3(c). 
The total weighted arc length in Fig. 3(a) is thus equal to the sum 
of the weighted arc lengths in Figs. 3(b) and (c). 

Fig. 3(c) suggests that we can find the optimal partition Ao, Al 
of A by clustering xi, . . , xLV into two bins such that the 
weighted sum A, (13) is minimized. We can interpret the func- 
tion (Y in (13) as assigning each z to one of the two clusters, and 
the function p as assigning a centroid to each of the two clusters. 

The alternative interpretations of LY and p are many. As we 
just said, we can interpret a as assigning each x, to one of the 

I&) * t 
44 

(b) 

l r(t1) 

PC4 

(4 P(+N) 

Fig. 3. Decomposition of average divergence. 

two bins Ao, Al. But we can also interpret LY as assigning each 
outcome of X to the left or right child of a node, and ,Ll as 
assigning optimal output labels to the left and right children. 
Or, we can interpret Q as the “split” at a node, i.e., as a 
particular test of a particular feature variable in the feature vector 
x = (Xl,... , X,). All of these views are equivalent. 

In some common cases, the decomposition A,, = A, + A, 
is well known. Indeed, it has been glorified as a Pythagorean 
theorem [.51]. For example, in the case of the squared error loss 
function, A12, A,, and A2 are the “total sum of squares,” the 
“between sum of squares,” and the “within sum of squares,” 
respectively. The best split on X is the one that maximizes the 
between sum of squares (i.e., the distance between left and right 
centroids), or equivalently, minimizes the within sum of squares 
(i.e., the residual variation). 

In the case of the log likelihood loss function, A,,, Ai, and 
A, are the mutual informations I(Y; X ) t), I(Y; o(x) ) t), and 
I(Y; X I o(X), t), respectively. In this case, the best split on X 
is the one that maximizes the information I(Y; o(X) ( k) gained 
about Y when o(X) is learned, or equivalently, minimizes 
the information I(Y; X 1 o(X), t) lost about Y when direct 
knowledge of X is replaced by knowledge of o(X) alone. 

We will now show that the optimal cy maps each outcome of 
X to its rzearest neighbor, p(tO) or &), using the appropriate 
divergence as the distance measure. That is, the optimal binary 
split cr has the following form: 

4x1 if = 1 0 4x, 4t0)) < 4x, Ah)) 
1 if 4x, ,4t0)) > 4x, Ah)) 

I 
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for all x  E A if P(x ] t) > 0, and is arbitrary if P(x 1 t) = 0 
or if the divergences are equal. If this were not the case, i.e., 
if the optimal cy were not a nearest neighbor mapping, then 
we could construct another mapping, say a’, that would strictly 
decrease A2 and hence strictly decrease the average impurity, 
contradicting the optimality of CL 

To see this, assume o(x) is not a nearest neighbor mapping. 
Let /3(/c) = p(tk) be the centroid of tk = t rl {c(X) = k}, 
as assumed in (12) and (13), and construct the nearest neighbor 
mapping 

C 0  a'(x) =  l if 4x, P(O)) <  4x, P(1)) 
if 4x, P(O)) >  4~ P(1)) (14) 

with o’(z) arbitrary if P(x 1 t) = 0 or if the divergences are 
equal. Since by assumption, o(x) is not a nearest neighbor 
mapping, there exists at least one x  such that P(z ] t) > 0, 
d(x, p(O)) # d(x, p(l)), and o(x) # a’(x). Furthermore, for all 
such x’s, 

Thus 

4x1 P(a’(x))) < 42, P(dx))). 

a2 = c P(x I t) 4x, @(Q’(X))) 

< c P(x I t) 4x> P(4x))) 
= AZ, (15) 

where the second equality follows from (13). 
This does not yet prove that a’ is a better partition than a, 

since p does not match a’ and hence & is not a difference of 
average impurities, as is A,. However, let p’(k) = p(t;) be the 
centroid of tk = t n  {o’(X) = k}, so that 

p’(rC) A argminE[I(Y, 6) ] $1 

“: = arg m m  L c P(x I t:v-v(y,~) I4 
r:a’(r)=k 

= arg mjn c  P(x I t:) 4x1 ti), (16) Y 
z:a’(z)=k 

where the last equality follows from the definition d(x, 6) = 
E[C(Y, 6) ] Z] - i(z). Then the difference between the average 
impurity of the intermediate partition induced by (Y’ and the 
average impurity of the most refined partition is given, as in 
(12) and (13), by 

A: = c P(x I t) 4x, P’(~‘(~))) 

= c P(fk I t) 6% I 6%) 4x, P’(k)) 
k z:a’(t)=k 

i c et: I t) c Pb I 6%) 4x> P(k)) 
z:a’(r)=k 

The inequality, of course, follows from (16). 
Combining (15) and (17), we obtain 

A; 5 a, < AZ. 

(17) 

(18) 

In other words, the average impurity of a’ is strictly lower than 
the average impurity of cr, contradicting the fact that CY is optimal. 
Hence the optimal cy must be a nearest neighbor mapping. 

W e  have proved the following for the binary K = 2 case. 
Theorem (Optimal Partitioning): A necessary condition on . any K-ary partrtton AO,. . . , AK-, of A = {z,, . , z,~} min- 

imizing the average impurity 
I<--1 

I(Ao, . . , Al<-1 ( t) = c  P(tk 1 +ltk) 

k=O 

is that z  E Ak only if k  = arg min d(z, p(tk)), or if P(s I t) = 
0, where tk = t n {X E &}. 

Thus a necessary condition for a partition to minimize the 
average impurity is that its bins satisfy a nearest neighbor 
condition with their centroids, where the “distance” measure used 
for computing both the nearest neighbors and the centroids is the 
divergence corresponding to the given impurity measure. Here, 
of course, we have defined the impurity at node t to be the 
minimum expected loss 

i(t) = $nE[e(Y,G) ] t], 

the centroid of node t to be the output value achieving the 
impurity 

At) = arg m jn MY, L) I 4, 

and the divergence of an output 
to be the excess expected loss 

value 6 from the centroid P(t) 

qt, 6) = E[C(Y, 9) ) t] - i.(t) 

The proof for K > 2 is a straightforward extension of the 
K = 2 case, and is not detailed here. 

As an example, consider M-dimensional multivariate re- 
gression under the squared error loss function. As shown in 
Appendix A, 

4x1 P(b)) = lb(x) - /4hI12> 
where ,u(z) = E[Y ] x] and p(tk) = E[Y I tk] are the ex- 
pectations of the M-dimensional random vector Y given t fl 
{X = x} and t n  {a(X) =  k}, respectively. According to the 
theorem, the optimal binary split pi has the following form: 

1 
0 

4x)= 1 
if lb(~) - dt0)l12 <  IlcL(x) - dh)l12 
if lb(x) - I-L(t0)l12 >  lib(z) - dtdl12 

with o(x) arbitrary if P(x I t) = 0 or if CL(Z) is equidistant from 
p(tO) and &). That is, assign x  to the left child if the vector 
E[Y I Z] is closer to p(tO) than to p(tl); otherwise assign x  to 
the right child. This reduces to a simple hyperplane test: send x 
to the left whenever 

cl(x) . (CL(h) - f4h)) I (Il&0)ll’ + ll/4~1)11”)/2~ 
where “ . ” denotes dot product. In one dimension, this reduces 
still further to a threshold test on b(x) = E[Y I x], in accordance 
with Theorem 4.5 of Breiman et al. [7]. 

As another example, consider M-class classification under the 
log likelihood !oss function. As shown in Appendix A, 

4x7 P(tk)) =  %(~)llP(h))r 

which is the information divergence, or relative entropy, between 
M-dimensional probability mass  functions P(Z) and CL(&) of Y 
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given t n  {X = x} and t n  {o(X) = k}, respectively. Once 
again, the optimal Q  reduces to a simple hyperplane test on the 
probability vector p(x) = E[Y ( x] = Pylx(. 1 z): send z to the 
left whenever 

w4~M~o))  I w4x)IICL(~JL 
or equivalently, whenever 

M  

c &I(x) 1% - 
Pm(tl) < 0,  

m=l Pm(tO) - 

In the two-class case, by expressing pa(z) as 1 - pi(x), this re- 
duces still further to a threshold test on pi(x) = P(Y = 1 I x) = 
E[Y I x], in accordance with [7, Theorem 4.51. 

In fact, Burshtein et al. [48] have shown that the optimal 
binary a reduces to a simple hyperplane test on p(x) for any 
loss function satisfying (6). This is the case for all of the loss 
functions listed in Appendix A. 

Our theorem gives- necessary conditions for a partition to 
minimize the average impurity, and hence greatly reduces the 
number of partitions that can possibly be optimal. In the two-bin 
case, if the nearest neighbor condition reduces to a hyperplane 
test, the number of partitions satisfying the necessary conditions 
for optimality is at most the number of linearly separable 
dichotomies of N points in A4 dimensions, or C(N, M). (A 
dichotomy of N points into two sets A0 and A1 is linearly 
separable if there exists a hyperplane separating points in A0 
from points in A,.) Cover [52] has shown that 

C(N,M)Z~.~(~;~) =“(N”). 
??I=0 

Thus the theorem reduces the number of possibly optimal par- 
titions from exponential in N to polynomial in N (but now 
exponential in M). To search through this number of possibly op- 
timal partitions, Burshtein et al. [47] have proposed an O(N”) 
time algorithm based on linear programming that is guaranteed 
to find the optimal partition in this case. Unfortunately, even 
in this case, a full search through the set of linearly separable 
dichotomies is infeasible, when either N or M  is large. Thus 
there is still a need for an algorithm that can efficiently search 
through the space of potentially optimal partitions. W e  now 
develop such an algorithm. The algorithm will also work for 
K 2 2 (the nonbinary case) and for arbitrary loss functions [i.e., 
loss functions that do not necessari ly satisfy (6)]. 

Using our theorem, we can find the optimal partition Q(S), 
if we know the centroids p(tk). Unfortunately, we can only 
find the centroids p(tk), if we know the partition o(x). The 
solution to this problem is to alternate these two steps, starting 
from an initial guess. It turns out that this procedure is a descent 
algorithm, in which the average divergence A, 1 0 is reduced 
at each step. Consequently, convergence is guaranteed. In fact, 
this algorithm is equivalent to the K-means algorithm [42] for 
determining pattern clusters or the generalized Lloyd algorithm 
[46] for designing vector quantizers, using the divergence as a 
distortion measure. 

Formally, let xl, . . . , xN be N letters, each with weight 
P(x ( t), and let Ao, . . . , AKvI be an initial partition of A = 
{Xl,. . . ,xN} into bins. For each bin Ak, let P(k) = p(tk) be 
its centroid, i.e., the vector $ that minimizes E[I(Y, 6) I tk], 
or equivalently, minimizes xIEAli P(x ) tk) d(x, @), where 
tk = t i-l {x E Ak}. F  or many loss functions (e.g., those 
listed in Appendix A), p(lc) can be computed simply as the 

weighted arithmetic average p(lc) = xIEAk P(x I tk)p(x) = 

E[Y ) X E Ak]. For others, p(k) may  have to be computed by a 
gradient search. Now, it follows from the construction of cy’ (14) 
and ,0’ (16) in the proof of the theorem, and the result (18), that 
the following two step procedure reduces the average divergence 
A2, and hence the average impurity (11). 

1) Update cr. to of for fixed p, by reassigning each x  to 
its nearest neighbor in the divergence sense. That is, let 
o’(x) = arg mink d(x, p(k)), breaking ties arbitrarily. 

2) Update ,D to p’ for fixed (Y’, by recomputing the centroid 
of each bin. 

W e  have the following algorithm. 
Algorithm (Partitioning): Iterate the above two steps to re- 

duce the average impurity. When no further reduction occurs 
(after a finite number of iterations), quit. The final mapping CY 
corresponds to a locally optimal partition. 

Convergence is guaranteed because the algorithm is a descent 
algorithm. If a partition does not satisfy the necessary conditions 
for optimality, then a new partition is constructed with a strictly 
lower impurity. Except in the last iteration, a partition cannot 
be tried twice, because that would imply that the impurity 
does not strictly decrease between iterations. Hence the number 
of iterations is bounded by the number of possibly optimal 
partitions. As mentioned above, this is O(N”) in the special 
but important case where the partition is binary and is given by 
a hyperplane. The general bound is O(K”). 

The computational complexity of each iteration of the par- 
titioning algorithm is O(MKN), where, to repeat, M  is the 
vector length of the centroids (e.g., the number of classes or the 
number of variables in multivariate regression), K is the number 
of bins (e.g., the number of children of a parent node), and N 
is the number of points to assign to the bins (e.g., the number 
of outcomes of the categorical variable X). The average number 
of iterations required is not known. Empirically, however, the 
number of iterations in K-means type algorithms is small (less 
than 20), and does not seem to depend heavily on M, K, or 
N [44, p. 99 ff.]. In contrast, the complexity of an exhaustive 
search is U(MK”). Even the complexity of the Burshtein et al. 
algorithm, when K = 2 and the optimal partition is known to 
be a hyperplane, is U(N”). Thus our K-means type algorithm 
can find a practically optimal partition in linear rather than 
exponential or polynomial time. 

IV. APPLICATION TO A LARGE FEATURE ALPHABET 

W e  have seen that the greedy growing algorithm for designing 
classification or regression trees seeks at each node the categor- 
ical feature variable and the partition of its alphabet that most 
reduces the overall risk of the tree. For a given node and feature 
variable, the partitioning algorithm of the previous section finds a 
locally optimal partition of the feature alphabet in time linear in 
the size of the alphabet. This permits the use of classification 
or regression trees in many problems where they would not 
otherwise be feasible, i.e., in those problems with large feature 
alphabets. In this section we examine one such problem: the 
letter-to-sound problem. 

In the letter-to-sound problem we wish to translate sentences 
of text into strings of phonemes for use in a text-to-speech 
system. One way to solve the letter-to-sound problem is to 
treat it as a classification problem using a sliding window 
technique. In this technique, each character of text is classified 
into one of M  phonemes by using as its feature vector a block 
of the immediately surrounding text. For example, to translate 
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the text “ . . . phonemes . . . ” into the string of phonemes 
“ . . . F-ONEM-Z . . . “, a window of length seven, say, slides 
over the text, and in each position, the classifier maps the text 
within the window to a phoneme that corresponds to the central 
character of the window. Characters not corresponding directly to 
a phoneme, such as silent “h”s, silent “e’s, spaces, and so forth, 
are ideally mapped into the null “-” phoneme, while characters 
that correspond to more than one phoneme, such as the “x” in 

TABLE II 
PROBABILITYOF ERROR(IN PERCENT)FORTHE LETTER-M-SOUND PROBLEM 

Train Test 

Decision Tree 7% 10% 
Neural Net 5% 22% 

“exit”, are ideally mapped into special compound phonemes. V. FURTHER APPLICATIONS 
The number of phonemic classes turns out to be A4 = 59 after 
the null phoneme and the special compound phonemes are added 
to the standard phoneme list. The number of letters in the feature 
alphabet is N = 29, since each feature variable is a character 
from the alphabet “a” through “z”, plus space, comma, and 
period. 

Sejnowski and Rosenberg solved this problem using an arti- 
ficial neural network as the classifier [53]. Here, we solve the 
problem using a binary decision tree as the classifier. Actually, 
Lucassen and Mercer were the first to solve the problem using 
a binary decision tree. However, they were unable to handle the 
letters directly as feature variables, since the alphabet size N is 
too large to consider an exhaustive search (or for that matter the 
Burshtein et al. algorithm). Instead, they converted each window 
of seven characters to a 78-bit string of binary features, and used 
a conventional approach to tree design. In contrast, we handle the 
characters directly as feature variables by using the partitioning 
algorithm. In this way we are not constrained to use at each node 
one of, say, 78 preselected binary tests. 

We implemented the partitioning algorithm for decision tree 
design by modifying the tree-growing software available with 
the S language statistical environment [54], [55]. As described in 
Appendix B, we smoothed the class probability density estimates 
at each leaf so that we could use the log likelihood loss 
function without the zeros in the histograms causing problems 
during clustering. The smoothing procedure is consistent with 
minimizing the log likelihood. 

We collected training and test sets for the letter-to-sound prob- 
lem from the NSF proposal used to initially fund this research 
[56]. The training set consists of a sequence of 5717 characters 
(39 sentences, 866 words) and the test set consists of a sepa- 
rate sequence of 1862 characters (13 sentences, 313 words). The 
training and test sequences were transcribed into phonemes by 
machine, and then the phoneme sequences were -hand-aligned 
with the character sequences, by inserting null “-” phonemes and 
creating compound phonemes where appropriate. 

Using the labeled training data, we designed a large classi- 
fication tree and then pruned back to minimize the error rate 
according to a lo-fold cross validation [7], [lo], [55]. The error 
rates of the resulting 168 leaf tree on both the training and 
test data are shown in Table II. Also shown in Table II are the 
error rates for Sejnowski and Rosenberg’s neural network, on 
the same task. Unfortunately the comparison is crude because 
the training and test sequences are different in the two cases 
(although they have approximately the same length). However, 
preliminary results indicate that decision trees are an attractive 
alternative to neural networks in terms of classification accuracy. 
Moreover, in terms of computational complexity, decision trees 
have a tremendous advantage: only table lookups, no multipli- 
cations, are required to classifv an obiect. The decision tree 
for this problem took only 20 minutes to design on a Sun 
Sparcstation 1, while the corresponding neural net took over 
24 hours to design on a DEC VAX 11/780 with a floating point 
accelerator. 

A. Variable Combinations 

Suppose that we want to test more than one feature at a 
single node. This may be particularly desirable if the features 
are suspected of being individually uncorrelated with Y, but 
jointly highly correlated with Y. The problem of selecting a 
good n-tuple of features to test, and then finding a good binary 
test of those selected features, is usually dealt with heuristically 
[71, [571. 

We can use the partitioning algorithm to help solve this 
problem, since we can treat each n-tuple as a single categorical 
variable with a large alphabet. For example, 10 binary feature 
variables can be combined into a single categorical feature 
variable with alphabet size 1024. The partitioning algorithm can 
then produce a map o that assigns each possible lo-bit pattern to 
either the left or right child. Conventional approaches, unable to 
deal with all 21°z4 possible splits, restrict o to some simple form, 
such as a boolean product of binary tests, and its complement. 

Although the partitioning algorithm does not directly address 
the selection of good n-tuples, it makes the selection process 
considerably easier by providing a fast algorithm for evaluating 
the merit of each candidate n-tuple. 

B. Surrogate Splits 
Suppose that at each node we wish to find not only the optimal 

split of the best feature variable X, but also the optimal split of 
the next best feature variable X’. This may be desirable if the 
tree is to handle missing data. If the primary feature variable X 
is somehow unavailable at a node, then we can use the second, 
surrogate split on the secondary feature variable X’. 

To design a surrogate split when the optimal split on the 
primary variable is known, and the secondary variable is chosen, 
we can align the categorical outcomes of the secondary variable 
with the binary outcome of the optimal split. In [7], this is 
performed by a linear search for the split of the secondary 
variable that predicts with the minimum probability of error the 
binary outcome of the primary split. Unfortunately, that error is 
not connected in any way with the loss function of the problem. A 
better way is to assign the categorical outcomes of the secondary 
variable to either the left or right child, according to the nearest 
neighbor criterion. 

However, it is possible to do even better, if we know the prior 
probability that the surrogate split is used, for then the surrogate 
split and the optimal split can be jointly designed. This idea is 
illustrated in Fig. 4. First, a decision is made as to whether to use 
the “optimal” or “surrogate” split, based, for example, on whether 
the primary feature variable is missing or not. The categorical 
outcomes of the primary and secondary feature variables are 
then aligned by assigning them to the left or right children so 
as to minimize the expected loss. This is done with the usual 
partitioning algorithm, treating the surrogate/optimal decision, 
the surrogate split, and the optimal split as one giant composite 
node, as in the figure. This composite node replaces the node 
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Fig. 4. Composite node for surrogate splits. 

in the original tree that contained only the optimal test. In this 
scheme, the “optimal” and “surrogate” tests are placed on almost 
equal ground. 

C. Composite Nodes 
As Fig. 4 suggests, it is possible to combine several tests into 

a single node, called a composite node. This arrangement may 
be an attractive alternative to variable combinations. 

Composite nodes are easy to construct: simply build an ordi- 
nary tree; to terminate the tree in two children, treat the tree as 
a composite feature variable that has one outcome per leaf. The 
partitioning algorithm optimally assigns each outcome, or leaf, 
to one of the two child nodes. 

There is no limit to this process. Composite nodes may consist 
of other composite nodes, which may consist of other composite 
nodes, etc. The pylons in the trees of Bahl et al. [9] are essentially 
constructed in this way, without the computational benefit of the 
partitioning algorithm. 

D. Higher Order Splits and Decision Trellises 
The optimal partitioning theorem and the partitioning algo- 

rithm apply just as easily to K-ary partitions, K > 2, as to binary 
partitions. The obvious implication of this is that they apply easily 
to the construction of K-ary trees, K > 2. A more interesting 
implication, however, is that they apply to the construction of 
directed acyclic decision graphs, which we call decision trellises. 

We have already seen an example of a decision trellis: any 
tree containing a composite node, strictly speaking, is not a tree 
(because the children of the composite node have more than one 
parent within the composite node) but is a more general directed 
acyclic graph. 

Things become more interesting if the leaves of the composite 
nodes are partitioned into more than two bins. For example, 
compare the ordinary tree shown in Fig. 5, constructed as usual 
by recursively applying the partitioning algorithm to the feature 
variable selected at each node, and the trellis structure shown in 
Fig. 6, constructed by treating the first layer as a composite node 
and applying the partitioning algorithm to its leaves, optimally 
assigning them to one of four bins. Clearly, the partition no 

Fig. 5. The first two layers of a tree. 

Fig. 6. The first two layers of a trellis 

TABLE III 
REDUCTION IN CLASS ENTROPY (IN BITS) FOR THE LETTER-TO-SOUND PROBLEM 

Layer 
Tree Trellis 

Train Test Train Test 

1 0.16 0.16 0.16 0.16 
2 0.08 0.10 0.20 0.19 

longer respects the tree structure. However, the expected loss 
of the structure E[1(Y, q(X))] is reduced, because the set over 
which the minimization occurs is less constrained. An experiment 
with the text-to-phoneme problem of Section IV shows that the 
reduction in expected loss (here, the class entropy) in the second 
layer of a seven-node trellis, such as the one in Fig. 6, is twice 
the reduction in expected loss in the second layer of a seven-node 
tree, such as the one in Fig. 5, when they have the same three 
internal nodes. See Table III. 

By considering the first two layers as a composite node, the 
process can be repeated: the leaves of the composite node can 
be optimally assigned to eight bins, the leaves of that composite 
node can be optimally assigned to 16 bins, and so forth. In fact, 
there is no particular reason why the number of nodes at each 
layer must grow in powers of two. On the contrary, preliminary 
results suggest that it is advantageous to expand the trellis as 
quickly as possible at the top (e.g., split the root node N ways), 
and then expand slowly near the bottom. Unfortunately, since 
layer by layer, the procedure is still greedy, there is no guarantee 
that such a trellis structure will outperform a tree. Moreover, 
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optimal pruning [7], [58] becomes impossible. 
Nevertheless, trellises are richer in expressive power than 

trees. In a trellis, each node t has an interpretation as the 
disjunction (union) of a conjunction (intersection) of events, e.g., 
t = (tl n  {X, E A,}) u (tz n  {XZ E A*}). In turn, each node 
tl and t2 has a similar interpretation. In contrast, each node 
t of a decision tree has a conceptual interpretation of only a 
conjunction of events, e.g., t = tl n  {Xl E A,}, where tl 
has a similar interpretation. Thus the nodes of a decision trellis, 
generally speaking, organize themselves into higher conceptual 
representations than do the nodes of a decision tree. Consequently 
decision trellises may  be more useful than decision trees in 
discovering the structure underlying a classification or knowledge 
representation problem. 

VI. SUMMARY AND CONCLUSION 

W e  presented a solution to the problem of finding the best 
K-ary partition of the outcomes of a discrete random feature 
variable, when the number of outcomes N is too large to consider 
an exhaustive search through the power set of possible partitions. 
In the Introduction we showed how finding such an optimal 
partition is required in the design of classification and regression 
trees, at each node and for each feature variable. In Section II 
we developed the framework for our solution, by generalizing 
Kullback’s information divergence to divergences of arbitrary 
loss functions, and by showing their close connection to the 
impurity measures of Breiman et al. In Section III we presented 
our main results: a theorem on the necessary form of an optimal 
partition, and an iterative algorithm based on the theorem for 
finding a locally optimal partition in time per iteration linear 
in the size of the feature alphabet. In Section IV we applied the 
algorithm to a problem with a large feature alphabet, specifically, 
the problem of letter-to-sound conversion. In Section V we 
suggested further applications of the algorithm, including the 
design of variable combinations, surrogate splits, composite 
nodes, and directed acyclic decision graphs. The Appendix details 
impurity and divergence measures corresponding to a number 
of common loss functions, and shows how to smooth empirical 
probability distributions in the event that the training data are 
sparse. 

The optimal partitioning theorem of Section III states that a 
necessary condition for a partition to minimize the expected 
loss is that its bins satisfy a nearest neighbor condition with 
their centroids, where the “distance” measure used for computing 
both the nearest neighbors and the centroids is the divergence 
corresponding to the given loss function. This theorem gen- 
eralizes the corresponding Theorem 4.5 of Breiman et al. in 
several ways. First, whereas Breiman et al. show that a threshold 
condition is satisfied by some optimal partition, we prove that the 
threshold condition is actually necessary, and hence is satisfied by 
every optimal partition. Second, whereas Breiman et al. restrict 
themselves to binary partitions, we handle partitions with an 
arbitrary number of bins K. This is critical in the design of more 
complex decision graphs. Finally, and most importantly, whereas 
Breiman et al. restrict themselves to either binary classification 
or univariable regression, we handle arbitrary numbers of classes 
or arbitrary numbers of regression variables, M. The threshold 
of Breiman et al. thus generalizes to an M  - 1 dimensional 
surface in an A4 dimensional space. For a number of common 
loss functions, including the squared error and the log likelihood, 
this surface is a simple hyperplane. 

The algorithm is a K-means like clustering algorithm, which 
follows from the constructive proof of the theorem, and which, 
naturally, uses divergence in place of Euclidean distance. When 
the partitions are determined by hyperplanes, the computational 
complexity of the algorithm is only O(MKN) per iteration. 
Since the algorithm converges quickly, apparently with little de- 
pendence on M, N, or K, the overall computational complexity 
of the algorithm is linear in M, N, and K. This contrasts sharply 
with either the O(MKN) complexity of an exhaustive search, or 
the O(N”) complexity of the Burshtein et al. algorithm, which 
is applicable when K = 2 and when the loss function has a 
special form. 

The reduction in computational complexity from exponential 
to linear in N and M  permits the use of classification or regres- 
sion trees in many problems where they would not otherwise be 
feasible. A good example of such a problem is letter-to-sound 
conversion, which was discussed in Section IV. In that problem, 
each feature is a character from a set of N = 29 possible 
letters. Whereas a computational complexity on the order of 2” is 
infeasible, a computational complexity on the order of 29 is not 
only feasible; it is attractive. Moreover, the larger the number 
of letters N, the better behaved the K-means algorithm, since 
the expected loss as a function of the centroids becomes more 
“continuous,” and the fixed points of the algorithm are unlikely 
to be degenerate. Thus our partitioning algorithm, though not 
guaranteed to find the optimal partition, complements the method 
of exhaustive search very nicely. For small N, exhaustive search 
can be used; for large N, the partitioning algorithm can be used. 

How large N can be in practice depends primarily on the 
amount of training data available. Consider trying to use a 
decision tree to predict the next word in a sentence, based on 
the J  previous words. The feature vector would consist of J  
categorical variables, with each variable having an alphabet size 
of N, the number of words in the vocabulary. The number of 
classes M  also equals N. If N = 10 000, say, then determining a 
locally optimal partition with our algorithm amounts to clustering 
ten thousand lOOOO-dimensional histograms into two bins. The 
amount of data necessary to accurately estimate such histograms 
is well over one hundred million samples, which is nearly 
impossible to collect even with today’s computer technology. For 
these problems, and even for much smaller problems such as the 
text-to-phoneme problem, “smoothing” of the probability density 
estimates is required, especially if the log likelihood loss function 
is used. (The log likelihood loss function does not permit any 
zeros in the probability densities.) W e  use a smoothing procedure 
described in Appendix B, which is consistent with minimizing 
the log likelihood loss. 

Finally, it should be mentioned that since the partitioning 
algorithm is essentially just a clustering algorithm, the vast body 
of literature on clustering algorithms may  be used to improve the 
algorithm’s speed or performance. For example, a hierarchical 
clustering technique used in conjunction with Ic-d trees may  be 
20-50 times faster than straightforward techniques with little 
loss in performance [59]. 

APPENDIX A 
SOME COMMON DIVERGENCES 

Weighted Squared Error (Regression) 
Let y  and 5 be real A&-dimensional vectors, and let W  be a 

real nonnegative definite M  x M  matrix. The weighted squared 
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error loss function is defined 

C(Y, G) = (Y - L)‘W(Y - il), 

where y’ denotes the transpose of y. The centroid of an event t 
is the M-dimensional vector 

p(t) = argmjnE[(Y - c)‘IV(Y -G) 1 t] 

= -w I tl, 
and the impurity is the minimum value 

i(t) = Jq(Y - P(t))‘W(y  - P(t)) I t] 
= E[Y’W Y  1 t] - p’(t)Wp(t). 

The divergence of G  from p(t) is given by 

d(&$) = E[(Y - $)‘W(Y - 0) 1 t] - i(t) 

= (P(t) - ~)‘W(  FL(t) - 81, 

which is itself a weighted squared error. When W  is the identity 
matrix and t is the whole space, we have the familiar relation 

-w- - ia” = -w - /412 + IlP - w 

Weighted Gini Index of Diversity (Classification) 
Let y  be an M-dimensional class indicator vector, let Q  be 

an M-dimensional class probability vector, and let W  be a 
real nonnegative definite M  x M  matrix. As with the weighted 
squared error, the loss function is defined 

!(Y, ti> = (Y - G)‘W(Y - 51, 

and the centroid of an event t, which minimizes the expected 
loss E[!(y , 5) / t], is the M-dimensional probability vector 

P(t) = -w I tl. 

The impurity 

i(t) = Jq(Y - P(t))‘w(y - P(t)) I t] 
= E[Y’W Y  1 t] - p’(t)Wp(t) 

is known as the weighted Gini index of diversity, which reduces 
to 

i(t) = 1 - c  #U; (t) 
m  

in the unweighted case and still further to 

in the unweighted two-class case [7]. The divergence of y  from 
p(t) is given by 

d(t, G) = E[(Y - j.j)‘W(Y - 6) 1 t] - i(t) 

= (P(t) - ti)‘W  Let) - 61, 

which is just a weighted squared error between probability mass  
functions. 

Information Divergence (Classification) 

Let y  be an M-dimensional class indicator vector, and let 
6 be an M-dimensional class probability vector with nonzero 
components. The log likelihood loss function is defined 

which is the approximate number of bits required to represent 
the class indicated by y  using a Huffman code matched to the 
probability vector $. The expected loss given event t is the 
average number of bits required to represent the class indicated 
by Y, 

JqW,i?) I tI= -~/&&)log.ilm, 
m  

which is minimized by the centroid p(t) = E[Y I t], the true 
probability mass  function for Y given t. The impurity at node t 
is the value of the expected loss at the centroid, 

which is just the entropy H(Y I t). The divergence of y  from 
p(t) is the average excess loss, 

qt, L) = - ~&z(t) logdm - i(t) 

or the relative entropy between 
arbitrary distribution 3. 

the true distribution p(t) and  the 

Weighted Misclassification Error (Classification) 
Let y  be an M-dimensional class indicator vector, let G  be an 

M-dimensional class probability vector, and let W  = (wmn) be 
a real M  x M  matrix whose mnth entry is the cost of represent- 
ing the mth class by the nth class. If the true class distribution 
were indeed 6, then the nth component of the row vector $ W  
would be the expected cost of representing Y by the nth class. 
The best class to represent Y would then be 

The weighted misclassification error can now be defined 

[(Y, $1 = c  YmWWnz;L*  > 
m 

which is the cost of representing the class indicated by y  by 
the class that minimizes the expected cost assuming the class 
distribution is c. The expected loss at node t is thus given by 

WY, 6) I 4  = c PUm(Qwmi* > 
m  

where p(t) = E[Y / t] is the true class distribution at node t, and 
it is minimized, by the definition of C*.‘, by $ = p(t), showing that 
p(t) is indeed a centroid of node t. Note that the centroid is very 
nonunique. Any probability vector 6 is a centroid provided that 
the ?i* minimizing C, GmwW,,  agrees with the rz* minimizing 
I&, PL, (ewnn. The impurity i(t) = E[C(Y, p(t) I t)] is just the 
mmrmum possible expected loss if Y must be represented by just 

I 
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one class, and the divergence d(t, e) = E[1(Y, 6) I t] - i(t) is 
just the excess expected loss when the class used to represent Y 
is chosen as if fi were the distribution of Y. 

The loss between y and G  can now be defined (if it exists) by 

In the unweighted case (w,, = 0 if m  = n and w,, = 1 
if m  # n), CL; is the most probable class according to the 
probability vector 3. Thus !!(Y, c) = 0 if Y indicates class 
C* and C(Y, a) = 1 otherwise. The expected value of this 
loss is equal to the probability of error when ti* is used to 
predict the class. This probability of error is minimized when 
n ^* = n*, where n* is the most probable class according to 
p(t) = Py(. 1 t). Th e impurity is thus the probability of error 
when ti* = n*. 

C(Y, 3) = 
J  

py(z) hdllpdz)) dz, 

where p, and pti are the densities of PV and PG. 
If y  is replaced by a random vector, say Y, jointly distributed 

with 2, PV becomes a conditional distribution of Z  given 
{Y = y}. A marginal of 2, say P, is induced by mixing the 
conditionals PV by the distribution of Y, which we assume is 
conditioned on node t. The expected loss can then be written 

E[W,ii) I tl = E m(z) lodllpdz)) dz 1  
I i(t) = 1 - &(n* I t), 

and the divergence is the increase in probability of error when 
h’ # n*, 

= 
I 

F(z) hdlldz)) dz> (20) 

d(t,G) = Py(n* I t) - Py(ti* It). 

Min imum Relative Entropy (Regression) 

where p is the density of p. Remarkably, the expected loss is 
minimized by 5 = p(t), where p(t) = E[Y I t], since by 
substituting (19) into (20) and taking partial derivatives with 
respect to 7, we obtain 

Let y  and D be arbitrary real M-dimensional vectors. Given an 
M-dimensional vector function f on a random variable 2 with 
reference measure R, we can define the loss function e(y, 6) in 

& J?i(z){log J r(w)es’f(w) dw - logr(z) - r/f(z)} dz 

terms of minimum relative entropies, as follows. Define = J  f(z)r(~)e”‘f’~’ dz 
J  r(z)ev’f(‘) dz - F(z)f(z) dz 

pv = argmin { W Q  II RI : Y = J f(z) dQ(z)} J = il - ,447 
as the minimum relative entropy distribution between the refer- which equals zero when @  = p(t). Hence p(t) = E[Y ] t] is the 
ence measure R and the set of probability measures Q  satisfying centroid of t, and i(t) = SF(z) log (l/p,(z)) dz is its impurity. 
the expectation constraint y  = s  f(z) dQ(z). If no probability The above development is only formal, because the loss 
measures satisfy this constraint, then PY is undefined. The function is generally not integrable, and hence Fubini’s theorem 
relative entropy (also known as the Kullback-Leibler distance, cannot be applied to the exchange of the expectation with the 
discrimination information, and information divergence) between integral in the cross entropy (20). However, the divergence, or 
R and Q, when Q  is absolutely continuous with respect to R, the difference between the expected loss and the impurity, is 
is defined well defined, 

waIR)=Jlog($)dQ(z) 46 6) = J 32) lodllpdz)) dz - i(t) 

= J q(z);og i@ dz, = 
r(z) 

where q(z) and r(z) are densities of Q  and R with respect to 
some other reference measure, perhaps Lebesgue measure. (If 
R itself is Lebesgue measure, then PY becomes the max imum 
entropy distribution satisfying the expectation constraint.) If Q  
is not absolutely continuous with respect to R, then D(Q I] R) 
is defined to be infinite. 

Likewise, let 

Pe = arg rnin { D(Q II R) : 6  = J f(z) dQ(z)} 

be the minimum relative entropy distribution between R and the 
set of probability measures satisfying 6 = s  f(z) dQ(z). As 
can be seen by solving the variational equations, the minimum 
relative entropy distribution has a density of the form 

r(z) exp{ rl&f(z)} 
"(') =  Jr(z) exp{r&f(z)} dz’ (19) 

where qr, is an M-dimensional Lagrange multiplier chosen to 
satisfy 6 = JpQ(z)f(z) dz, and 5 is the transpose of vti. 

J ~(z)log(P,(z)lP~(z))dz 

= ~,(z)log(~,(z)l~~(z))dz, J 
and the above arguments can be applied rigorously in this case 
[50], [60]. Note that the divergence is just the relative entropy 
between P,, and PG, which are in turn the minimum relative 
entropy distributions between the reference measure R and the 
constraint sets {Q : p(t) = St(z) dQ(z)} and {Q : 6 = 
S f(z) dQ(z)l. 

Itakura-Saito Distortion (Regression) 

Lety = (r,(O),r,(l),... ,r,(M)) andi3 = (r;(O),r;(l),+.., 
ri (M)) be Mth order autocorrelations of a discrete time sta- 
tionary random process 2 = {Z,}, under two different process 
measures. Since y  and c are expectations of the same vec- 
tor function f(r) = (zi, zgzl,. . . , zOzM) under two different 
measures, the loss between them can be measured in terms of 
minimum relative entropy with respect to a reference stationary 
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process measure R. Specifically, let R” be the restriction of R 
to 2” = (20, Z-1, . ’ ’ ,Zn-r), n > M, and let 

P; = arg mirin { D(Q” II ~“1: Y = 1  fv) dvw} 

be the minimum relative entropy distribution with respect to R” 
satisfying y  = s  f(.~~) dP,“(z”). Define Pi similarly. Then 
the loss, expected loss, centroid, impurity, and divergence are 
defined as usual, for example, 

CL(t) = w I tl 
and 

d”(t,i2) = D(P,;t, /I P;). 
It can be shown [61], [60] that if R is a zero- 

mean Gaussian autoregressive process, the per letter relative 
entropy D(P,” 11 Pi)/ n converges to one-half the Itakura-Saito 
distortion 

D(P,” II P,P)/n -+ dIs(S,, SQ)/2 

= St *s,(e) s,(e) S,(Q ) - log S,(6) 

between the power spectral densities S,(e) and S*(e) of the least 
squares Mth order linear predictive models with autocorrelation 
coefficients y  and Q, respectively. It turns out that this is easy 
to compute [62], [34]: 

dIs(S,,&,) =  F  - 
62  

log - - 1, u2  

where W  is the Mth order autocorrelation matrix for a stationary 
process with Mth order autocorrelation vector y, &-2 is the 
minimum Mth order linear prediction error for that process, a 
is the vector of optimal Mth order linear prediction coefficients 
for a process with Mth order autocorrelation vector 6, and u2 
is the gain for that process (assuming a0 = 1). These quantities 
may  be obtained by a standard LPC analysis, using Levinson’s 
algorithm, for example [63]. 

W e  may  now define a new divergence function based on the 
above limit: 

44 L) = dIs (Qtj, So). 
Clearly, this divergence is minimized by 
since p(t) minimizes (21) for every 12. 

5 = ,4t), as desired, 

APPENDIX B 
SMOOTHING EMPIRICAL DISTRIBUTIONS 

The log likelihood loss function C(y, 6) requires that all 
components in the probability vector 6 be nonzero. Therefore, 
if the information divergence is used in the partitioning algo- 
rithm, the bin centroids must be “smoothed” to eliminate zeros. 
Nominally, each bin centroid p(tk) is the average of probability 
vectors P(Z), z  E Ak, and each P(Z) is in turn the empirical 
probability mass  function (pmf) of Y given X = 2. Thus 
k(tk) is nominally the empirical pmf of Y given X E Ak. 
Empirical pmfs, or equivalently histograms, typically have many 
zeros, particularly if the number of classes M  is large and 
the data are limited. There are a number of methods in the 
literature for “smoothing” empirical pmfs, which try to estimate 
the probabilities of unobserved events. These include Turing’s 

formula [64] and Laplace’s estimator [65]. W e  use another 
approach, similar to that of [9], which is consistent with our 
objective of finding the centroid that minimizes the average 
information divergence. 

Precisely, suppose we are trying to estimate the centroids p(tO) 
and p(tl), where to and tl are children of parent node t. Using the 
parent’s centroid b(t) as a prior, which we assume has already 
been likewise smoothed and hence contains no zeros, we choose 
as the smoothed centroid of each child the convex combination 

G(b) = XCL(b) + (1 - X&(t), 

where &tlc) is the unsmoothed centroid of tk and X E [0, 1) is 
chosen to minimize the total log likelihood loss over the entire 
data set, 

c  qy, 2 Ati, + (1 - Gw) 1 (22) 

where for each sample (x1, y,) in the set with x3 E Ak, $., 
is the unsmoothed centroid of the kth bin, computed as if the 
jth sample were not in the training set. (This is the “leave-one- 
out” estimate of the empirical pmf of Y given X E Ak.) This 
jth sample is used instead in the “test” set. Summing the losses 
over the “test” set constructed in this way, we obtain (22), for 
a given X. 

W e  find the optimal X in (22) by taking the derivative and using 
an iterative root finding algorithm. Conveniently, this can be done 
without going through the training set on every iteration, because 
a few histograms sufficiently summarize the data. Specifically, let 
P(y) be the smoothed prior b(t), let P,(y) be the “leave-one- 
out” estimate cl, and let yj be the class of the jth sample. The 
derivative of (22) with respect to X becomes 

-c~log[xq,(Y,)+(l-x)B(Y,)] 
J  

c 
C(Y,) - RYJ =- 

J Xp,(Y,) +  Cl- JmYJ 
(23) 

W e  now split the sum according to whether xJ E A0 or A,, and 
treat each component separately. Let h(y) be the histogram of 
all L samples in bin Ic. Then P,(-y,) = [h( yJ) - l]/(L - 1). Let 
A(y) = [h(y) - l]/(L - 1) - P(y). Then the k  component of 
(23) becomes 

which is easily computed at every iteration. 
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