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Consider the ridge estimate (A) for # in the model 3 = X + ¢ ¢ ~ T, & N, of unknown,
A(AY = (XX + aA)"F ATy We siudy the method of generalized cross-validation (GCV) for
choosing a good vatue § for A, from the data The estimate & is the minimizer of 1) given by

vy = i - A(A))_ril’/ &mcc u- m);}’.

where A{A) = Y(YTX 4 nAf)7'X7 This estimate is o rotation-invariam version of Allen’s
PRESS. or ordinary cross-validation This estimate behaves like a risk improvement estimator,
but does nol require an estimate of %, 5o can he used when # = pis small. or even if p 2 s in
certain cases The GCV method can also be used in subset selection and singular value
{rurcation methods for regression. and even to choose from among mixtures of these metheds
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1 INTRODUCTION

Consider the standard regression model
yo=XB8+ e {(1.13

where y and ¢ are column n-vectors, § is a p-vector
and X is an n X p matrix; € is random with Ee = 0,
EFee? = g%, where [ is the n X n identity

For p = 3, it is known that there exist estimates of
8 with smaller mean square error than the minimum
variance unbiased, or Gauss-Markov, estimate B0)
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= (X7X)' X7y (See Berger [8], Thisted {39}, for
recent results and references to the earlier literature.)
Allowing a bias may reduce the variance tremen-
dously.

in this paper we primarily consider the {one pa-
rameter) family of ridge estimates B\ given by

BN = (XX + n\)-'XTy. {1.2)

The estimate B(\) is the posterior mean of 8 il § has
the prior 8 ~ 90, al}, and A = ¢*/na AN} is also the
solution to the problem:

Find # which satisfies the constraint

8l = v

and for which
] . .
=y = XgI| = min

Here || - || indicates the Euclidean norm and we use
this norm throughout the paper Introducing the
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Lagrangian we find that the above problem is equiva-
lent to finding the minimum over 3 of

~1ly = X8II* + A8l (13)

where A is a Lagrange multiplier. Methods for com-
puting A given vy are given in [17]. See [29] for dis-
cussion of (1 3} The method of minimizing equation
(1.3), or its Hilbert space generalizations, is called the
method of regularization in the approximation theory
literature (see [21, 44] for further references).

It is known that for any problem thereisa A > 0
for which the expected mean square error E[[8 -
B(A)}i* is less than the Gauss-Markov estimate; how-
ever the A which minimizes, say E[|8 — AMi* or
any other given nontrivial quadratic loss function
depends on ¢* and the unknown g

There has been a substantial amount of interest in
estimating a good value of A from the data. See [10,
i, 12,15, 20, 22, 23, 25, 26, 27, 30, 31, 32, 35, 38, 39},
A conservative guess might put the number of pub-
lished estimates for A at several dozen.

In this paper we examine the properties of the
method of generalized cross-validation (GCV) for
obtaining a good estimate of X from the data The
GCV estimate of A in the ridge estimate (1.2) is the
minimizer of ¥{(\) given by
b

v = 2= aowie /[ L rrace - a0y |
(14)

where

ANy = X(XTX + nhy-1x7. (L.5)
A discussion of the source of {A) will be given in
Section 2. This estimate s a rotation-invariant ver-
sion of Allen’s PRESS or ordinary cross-validation,
as described in Hocking's discussion to Stone's paper
[36] (see also Allen [3], and Geisser [13]).

Let 7{A) be the mean square error in estimating
X3, that is,

HA) =~ X8 — XBOW|~ (1.6)

L
"
It is straightforward to show that

ETO) = L0 = AGDg I+ S Teay) (1)

where
g = XB

An unbiased estimator T()\) of ET()\), for n > P, is
given by
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A =

2g*

= ST - A) + 7,
(1.8)

(7 — 4w

1
n

where

-
n—p

Mallows [28, p. 672} has suggested choosing A to
minimize Mallows” C,, which is equivalent to mini-
mizing n T(\)/é* (This follows from [28] upon not-
ing that ||(/ — A(A))y]|? is the “residual sum of
squares.”} The minimizer of T was also sugpested by
Hudson [25]. We shall call an estimate formed by
minimizing 7 an RR (“range risk”) estimate.

We shall show that the GCV estimate is, for large
n, an estimate for the A which approximately mini-
mizes ET(A) of (1.7), without the necessity of estimat-
ing o* As a consequence of not needing an estimate
of ¢% GCV can be used on problems where nn — p is
small, or (in certain circumstances), where the “real”
model may be

¢ = xexmy-xmy=

@

=2, xuB ¥ e,

F=1

=12 n (19)

It is aiso natural for solving regression-like problems
that come from an attempt to solve ill-posed linear
operator equations numerically. In these problems
there is typically no way of estimating o® from the
data. See Hanson [19], Hilgers [21}, Varah [40] for
descriptions of these problems. See Wahba [44] for
the use of GCV in estimating X in the context of
ridge-type approximate solutions for ill-posed linear
operator equations, and for further references to the
numerical analysis literature. See Wahba, Wahba and
Wold, and Craven and Wahba [9, 42, 43, 45, 46] for
the use of GCV for curve smoothing, numerical dif
ferentiation, and the optimal smoothing of density
and spectral density estimates. At the time of this
writing, the only other methods we know of for esti-
mating A from the data without either knowledge of
or an estimate of ¢% are PRESS and maximum likeli-
hood, to be described. We shall indicate why GCV
can be expected to be generally better than either.
(PRESS and GCV will coincide if XX7 is a circulant
matrix.)

A fundamental tool in our analysis and in our
computations is the singular value decomposition
Given any n X p matrix X, we may write

X = UDVT

where U is an n X n orthogonal matrix, Visap X p
orthogonal matrix, and D is an n X p diagonal matrix
whose entries are the square roots of the eigenvalues
of X7 X. The number of non-zero entries in D is equal
to the rank of X. The singular value decomposition
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arises in a number of statistical applications [I8].
Good numerical procedures are given in [16].

In Section 2 we derive the GCV estimate as &
rotation-invariant version of Allen’s PRESS and dis-
cuss why it should be generally superior to PRESS. In
Section 3 we give some theorems concerning its prop-
erties. In Section 4 we show how GCV can be used in
other regression procedures, namely, subset selection,
and eigenvalue truncation, or principal components.
Indeed GCV can be used to compare between the
best of the three different methods, or mixtures, of
them, if you will. In Section 5 we present the results
of a Monte Caric example.

2 THE GENERALIZED CROSS-VALIDATION ESTIMATE
OF A AS AN INVARIANT
VERSION OF ALLEN'S PRESS

The Allen’s PRESS, or ordinary cross-validation
estimate of A, goes as follows. Let §'¥(A) be the ridge
estimate (1.2) of B with the kth data point y,, omit-
ted. The argument is that if A is a good choice, then
the kth component [XB*(A),. of X¥8*(A) should be a
good predictor of y,. Therefore, the Allen's PRESS
estimate of A is the minimizer of

P(\) =

=X

kZ ((XBS Nk = ya)’ (2.1)

It has been observed by one of the referees that
P(A) may be viewed as a direct sample estimate of
A ly* — XBOO|)F = T(\) + o* where here B(}) is
supposed fixed, y* is a future hypothetical observa-
tion vector, and E,. denotes expectation over the
distribution of y*.

It can be shown, by use of the Sherman-Morrison-
Woodbury formula (see [24]), that

PO) = = IBOXE = Ayl (22)
where B()\) is the diagonal matrix with jjith entry 1/(1
— a,(A)), a;{7) being the jjth entry of A(A) = X(xX°x
+ nA) X7

Although the idea of PRESS is intuitively appeal-
ing, it can be seen that in the extreme case where the
entries of X are 0 except for x,, i = 1,2, ~ -, p, then
[XB*(N)], cannot be expected to be a good predictor
of yx. In fact, in this case 4(A) is diagonal.

E 1
PO = 3 9

and so P(\) does not have a unique minimizer. It is
reasonable to conclude that PRESS would not do
very well in the near diagonal case. If § and ¢ both
have spherical normal priors, then various arguments
can be brought to bear that any good estimate of A
should be invariant under rotations of the (measure-

ment) coordinate system. The GCV estimate is a
rotation-invariant form of ordinary cross-validation.
It may be derived as follows: Let the singular value
decomposition [16] of X be

X = UDV".

Let W be the unitary matrix which diagonalizes the
circulants. {(See Bellman [7], Wahba {41].) In complex
form the jkth entry [, of Wis

1 ,

U/V]Jk; mﬁezﬂjkm’ jskﬂ i» 29"\”‘
The GCV estimate for A can be defined as the resuilt

of using Allen’s PRESS on the transformed model

F=WUy= WDF'g+ WUl
= Y5+ Wl e

The new “data vector” is y = (J,,~ -, ¥4)", and the
new “‘design matrix” is X = WDVT. XX* (“*" means
complex conjugate transpose) is a circulant matrix
(see [6,41]). Thus intuitively, [X*(A)}, should con-
tain a “maximal” amount of information about y,,
on the average. By substituting X and y into (2.2),
and observing that A(\) = X(X*X + nA[)"'X* is a
circulant matrix and hence constant down the diago-
nals, and A()\) and A()) have the same eigenvalues, it
is seen that P(M\) becomes V{A) (see (1 .4)) given by

vy = L - ol /

|:1TII- (A))}

L (2 )/
nyz_; Nom F N 2
1 HA

[nf\j’l Aon }\

wherez = (zy," ", z,)T = UFyand Ay, v = 1, 2,74 1,
are the eigenvalues of XX, A, =0, v > p.

It can also be shown that ¥{)\) is a weighted version
of P{\), namely

i

- p}z (23)

L}

YAy = n;; (IXB™(N)]e — ya)® Wi
where
Wr(A) = L ald) -E-QM(A)
1 - - Tr A(A)

We define the GCV estimate of A as the minimizer
of (1.4), equivalently (2.3), and proceed to an investi-
gation of its properties.
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] PROPERTIES OF THE GCV ESTIMATE QF A
Theorem | (The GCV Theorem)

Let u, = f;m- A, e = j_t Tr A%N), 6% =

2

1
=l = a0

Then
ET(\) = EVIMN + &8 ~w(2 — )
ET(N) (1 — m)®
a? B
T oy (1= ) ()
and so
|ET(A) — EVIA) + o ( pﬁ) 1
< lap+ 22—
ET(N) S AN Y R

whenever 0 < p, < 1.
Proof Since ET = b* + o EV = [b* + o¥{] — 2, +
p}/A1 — )3 the result foliows from

!
ET — EV = (6° + v*u, (i~———~—~———.—,)
G T Ty
oo =2
0=y
- p - 1 " .U.lx
T+ "—I;V=ET(1—-——~——q)+ S TRy
Hiro T AR =
Remark - This theorem implies that if
;';»Tm(,\)u#;_.o asn — @
and
i) /(resm)- 2
(n Tr A(N) n'IrA(f\) ” 0 asn—o

then the difference between ET{N\) + ¢ and EV(\) is
small compared to ET{A}. This result and the fact
that in the extreme diagonal case P{)\) does not have
a unique minimum suggests that the minimizer of
V(XY is preferable to the minimizer of P(N) if one
wants to choose A to minimize

1
o Exl

v = XA

Corollary: Let

: [
= (2. +m)_____°
B Y A SR

Let A? be the minimizer of ET(A) Then EV{A) always
has a (possibly local) minimum X so that the “ex-
pectation inefficiency” /* defined by

. ETN)
ET(AY
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satisfies

PSRNty
I = h(h)

Remark. This corollary says that if A(A°) and H{X)
are small then the mean square error at the minimizer
of £V(A) is not much bigger than the minimum pos-
sible mean square error min, ET(\)

CProof Let A = (M0 < X< o EVQ) ~- o2 <
TA%(1 + A(A%))
Since

ETOME — M) < EVF(M)— o® < ETOO{ + B\,
0 € A< o,

and £T, EV and h are continuous functions of X, then

A is a non-empty closed set. If O is not a boundary

poini of A, then EF{)) —o? has at least one minimum

in the interior of A, call it . (See Figure | Y Now by
the theorem

ET(O( = Min< EV(X) — ¢* < ET(A%){1 + A"
and so

() < LAY

= T = T=h(N)

I A includcs 0, then X may be on the boundary of .\,
ie, A =0, but the above bound on /° still holds
Example | Note that

- P& A P
==Trd=—) —L_<L
Moy ’ Hof= N+ uN T on

[y A, )
c o Gra) (2 )
b (e 1 2 o

<
" i ( A )2 T on ‘
Pl Auﬂ + P\ ‘

Then

P L ‘
T T i—f—)z

Hn

Hence lor p fixed and # — @, it follows
that

!"Sl+6£—+0(£«)
H n

Example 2 p > n.

It is not necessary that p << nfor /®totend to |, as
this example supgests What is required is that Y Y7
become il conditioned for » large
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Let
Y= g.t',jﬂj+e,, i=1,2, -,
p > (32)
with
J’ix”ﬁs.’cl<w, all i, }ziﬁﬁgkg'(m
Suppose

lim %“TrXX" = lim —I—E xfrk<e

A= no

o
e
¥

and suppose the eigenvalues A, v = 1,2, -, n}of
XXT satisfy

A = ip™ ™,

say, for somem > 1 (ks = ). p=™

o]
Then

4]

L A l i
ey ?::l A 0N o0 ; 1 + ™

b F dx 1 [ o
T Ay (DA™Y Ay (14 x™)

L (e Jalg
Bz =7 ,zg Mw T 0N/ T o ,‘?‘l (1 -+ Aemy?

L f’ dx _ 1 [“’ dy
o3 " s (] + ;\'\_m):! ”‘\]Irrl Jo (l e xu:)‘.!

and g — 0, 0% wy — 0 i nAYT @
Now

BHN) = A BTXTY + aN)T YT XXTY + aN) B

|

Nyaps o A
<Susi s,
since the lurgest eigenvalue of
(YTX + nAD) 7' NXTXNTY + ad)?

w1
T ) + (A ™ 2

As n — @, the minimizing sequence \* = X\'%n) of
ET(N) = 030\ + a°ud N) clearly must satisfy A° — 0,
AalAYm o, g0 that the GCV Theorem may be
applied It is proved in [9, 44] in a different context
that X as well as A? satisfies (#1\Y™) —  so that A(R) —
0. MM = 0and | lasn — @

Instead of viewing 3 as fixed but unknown, sup-
pose that g has the prior 3 ~ U0, af). Let Ey be
expectation with respect to the prior. (We reserve £
for expectation with respect o € ) Then

ET(M(H—h[M)‘\

AY P -
£T{X) \\‘ ” ETON(-RIAN
ETO =T /
\ 8
XN
A
R,

FIGURE | Graphical suggestion of the proot of the corollary 1o
the GCVY theorem

Theorem 2

The minimizer of £yEF(A) is the same as the mini-
mizer of EgET(M) and is A = ¢%/na.
Proof Since Fgg' = £ XBR'XT = a X7,

EZET(N) = %Tr(l — APYXT + c:—;Tr A

EgEV(MNy = &?—? Tr(f = APVYT + —r;:Tr {(f—A4 )2:}

i 2
/ [T;-Tr(I—A}:l- (3.3

The proof proceeds by differentiating (3.3) with re-
spect to A and setting the remainder equal to 0. This
caleulation has appeared elsewhere [43 p. 8], and will
be omitted

4 GCVINSUBSETSELECTION AND GENERAL LINEAR
MODEL BUILDING

Let p = g + ¢ where g is a fixed (unknown) n-
vector and & ~ YO, o*f), ¢® unknown. Let A(»), v in
some index set, be a family of symmetric nonnegative
definite n X »n matrices and let

ki) =6 Tr A(n)
L i
L
po ) = o Tr A%
Letting

1 2
) = — 1l g = 40y II*

and F(#) as belore with A(\) replaced by A(r), then
{3 1) clearly holds irrespective of the nature of
A different way of dealing with ill conditioning in

TECHNOMETRICS ©. VOL 21. NO 2, MAY 1979
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the design matrix 1s o reduce the number of predictor
variables by choosing a subset 3, 3, v 4, ol the
3's Let »bean index on the 27 possible subsets of 3,

, 3. let A" be the n X k(r) design matrix corre-
sponding to the »* subset, und let

Br) = (Y7 Yoyt ytny,
A{p) XU YT Yy yey,

i

Then
wy = k/n,

Mallows [28] suggestion to choose the subset mini-
mizing C, becomes, in our notation, the equivalent of
minimizing 7( ) of (1 8) with A{X) replaced by A(»),
see also Allen {2]. This assumes that an estimate of o*
is available. Parzen [33] has observed that, if one
prefers to choose a subset without estimating o7, (be-
cause one believed in the model (3 2), say), GCV can
be used The subset of size < K, with smallest Fean
be chosen, knowing that

VET() = EV() = &* | _ ds
ET(v} A

i s = kin

even if the model (3 2} is nontrivially rue

In the subset selection case, GCV asymptoticatly
coincides with the use of Akatke's informution crite-
rion AIC {1] since

ALC = (2} log maximum likelihvod + 24
= nlog - [ = Aplj+ 2%
and so
I, . .,
— = Al = yplf?
e 0 = & =2 =)
T
H n/
as
kg
"

We thank E Parzen for pointing this out M. Stone,
[37] hus investigated the relations between AIC and
(ordinary) crossevalidation

Another approach, the principal components ap-
proach, is alsu popular in sclving ill-posed linear
operator equations, see Baker et al [6], Hanson [19],
Varah (405 The method is to replace X by X{(m)
defined by Y() = U D(vy ¥', where D{(») is the
diagonal matiix of singular values of ¥ with all but
the #th subset of singular values set equal to 0 Then

Ay = L DUy (DYDY Yy D) U

1) i3
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where the ones are located at positions of the #h
subset of singulur values, and, again gy, < p/a, 0%/ us
< p/a, where p can be replaced by the number of
singular values in the largest subset considered

In faet, it is reasonable to select from among any
family {4(#)) of matrices for which the corresponding
py and p*/ . are uniformly small, by cheosing that
member for which V(») is smallest. Mixtures of the
above methods, e g a ridge method on o subset, can
be handled this way Note that the conditions g,
small, p*/ue small are just those conditions which
make it plausible that the “signul” g can be separated
from the noise. These conditions say that the 4 ma-
trix essentially maps the date vector {roughiy} into
some much smaller subspace than the whole space.
Parzen [34] has also indicated how GCV can be used
to choose the order of an autoregressive model 1o fit a
stationary time series

5 A NUMERICAL EXAMPLE

We choose o disgretization of the Laplace trans-
form as given in Vargh, [40, p 2627 as an example in
which X7 Y is very il conditioned

We emphasize that the following is nothing more
than a single example, with a single X and 8 [t does
not indicate what may happen us ¥ and 3 are varied
It is intended as an indication of the type of Monte
Carlo evaluntion study that an experimenter might
perform with the particular Y that he has at hand,
and perhaps one or several J that represent the class
ol s he believes he s likely to encounter Wesuggest
that an experimenter with particular design matrix at
hand evaluste candidute methods (at least crudely),
perhuaps inctuding subset selection and/or principal
components, as well as ridge methods aguainst his ¥
and aguinst a realistic set of @, before linal selection
of a method. The values for n and p in the experiment
presented here were 21 and 10 and the condilion
number of X, namely the ratio of the largest to the
smallest (non-zero) singular value, was 134 % 1
The value of || Y3 H* was 370 84

Four values of #* namely ¢* = [0~3% [0-% 10-*und
1077 were tried and for each value of o* the expert-
ment was replicated four times, giving a total of 16
runs The ¢, were generuted as pseuda-random (0.
o} independent r ¢ s, F(AY was computed using the
right-hand side 0i {2 3) and the Golub-Reinsch singu-

lar value decomposition [16] The minimizer X of

F{AY was determined by a global search T(A) was
also computed and the refutive inelficiencies [, and £
of \ defined by

fop= 3= 3% min fa—a30 i
b (3
L= Tivi min TN
)
were computed €0 = Tdomain L R = range )

i
]
i
'
!
i
?
¢
i




The results ol a comparison with three other meth-
ods are also presented The methoeds are, respectively.

I PRESS, the minimizer of P(A)

2 Range risk. (RR) the minimizer of T(\}

3 Maximum likelihood (MLE)
The maximum likelthood estimate is obtuined from
the model

o=

Vg + ¢

with « =~ 308, %) and 4 having the pror distribu-
tvon d ~ W0 afy Then the posterior distribution of
i

B N (VYT 3
shere v o= f nae The ML estimaie for A fiom the
miadel (3 21y then the minimizer of Wiy given by

! TR I RNEY

1/ SR RS S U A S —
o o [De) = dian ]

{33
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TABLE temOfvert o tnefficivncios in vixteen Yonte Carfo runy
Replication 1 Replication 2 Replication 3 Repiication 4
Ig IR ID IR ID IR [D IR
o2=10"8, s/n = 2200
GCV 4.43 1.06 1.65 1.03 16.71 1.10 1.02 1.03%
RR 1.46 1.00 1.66 1.03 8.69 1.01 1.22 1.03
MLE 1.67E3 1.3 1.45E2 1.23 2.00E3 1.53 9.12E3  1.51
PRESS 2.3183 4 BE4 B.IE? 8.6E4 3.84E3 2.1E5 2.87E3 1.2E5
Min Sol'n 1.00 1.62 1.00 1.54 1.00 2.27 1.00 1.00
Min Data 1.20 1.G0 Z.89 1.00 5.97 1.00 1.00 1.00
s%=107%, s/ = 420
GCV 1.92 1.05 1.32 1.006 1.51E2 1.26 2. 20 1.02
aR 1.83 1.06 1.90 1.07 7.03E1 1.10 1.18 1.00
MLE 1.89E2 .19 1,70E2 1.45 1.76E2 1.2% 1.458E2 1.32
PRESS 5.80 1.01 2.41E2 1.3%9E4 36.37 2.43E3 67.00 6.07E2
Min Sol'n 1.00 1.3 100 1.02 1.00 1.20 1.00 1.03
Min Data 3.586 1.00 1.28 1.00 7.85 1.00 437.29 1.00
221070, sy = a2
GCV 1.27 1.G7 1 50 Z2.58 1.00 1.1 1.00 1.03
RR 1.18 1.08 1.03 2. 27 1.07 1.132 1.00 1.03
MLE 1.56 1.20 2.16 3.43 7.90 1.49 2.67 1.07
PRESS 3.53 i.57 2.03 3.43 8.66 2.03 Z2.90 24 34
din Sol'n 1.060 1.21 .00 205 1.00 o1 1.00 1.03
Hin Data 326 1.00 1.16 1.00 2.39 1.00 1.16 1.00
s2=1072, s/ = a2
GLV 1.40 2.47 Z2.01 1.60 1.59 1.01 37.20 17.2
R 1.38 2.3% 2 .41 1.70 1.41 i.02 10.8 14.6
HLE 2. 13 3.56 3.8 1.87 2.00 1.00 28.8 16.8
PRESS 1. 04 1.01 2.0¢ 2 .68 1.00 1.22 2.16 21.5
Min Soi'n 1.00 1.31 1.00 1.01 100 1.25 1.00 1.598
Min Data 1.02 1.00 100 1.00 2 66 1.G0 1.21% 1.00

This estimate is the generad form ol the maximum
likelihood estimate suggested by Anderssen and
Bloomfield in the context of numerical differentiation
[43) It can be shown that the minimizer of £y £
MN) is o%/ma. However, it can also be shown that il 3
hehaves as though it did not come Trom the prios

(c g s in the modei (1 9)
Pl

then the minimizer of £ WA may not be g good
estimate of the minimizer ol ER(A}

Fpyand £ of (3 Tywere determined Tor cach of these
three methods as well as GOV oand the resuits are
prosented in Table 1 The entiies nest o "Min Sol'n
and M Dot oare the inefliciencies 13 1) with &
repiaced by the minimicers ol - Toiamd T\
rospectively SN the Tatzoal to noise subo iy de-
daed by S M= f o UG T e 2 ognves a
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TN
18- 8, e PIA VIA)
MIX)
TN
A
v ‘ﬁ\ /
1 | ) | i
-7 -6 -5 ~4 -3 ~2
by

FIGURE 2 M) T(A) TUA) AN, POV and 18—an

plot of V(N), T(A), M(N), P(A), [[B—5r1% and T(\)
for Replicate 2 of the g2 = 10~° case. The ¥(A), T(A)
and T(\) curves tend to follow each other as pre-
dicted

D 1 Gibbons [14] has recently completed a Monte
Carlo comparison of [0 methads of choosing &
Three estimators, GCV, HKB (described in [23}),
and RIDGM (described in [10,11]) were identified as
the best performers in the examples studied. HKB
and RIDGM use estimates of o>

6 COMNCLUSIONS

The generalized cross-validation method for esti-
mating the ridge parameter in ridge regression has
been given. This estimate does not require an esti-

mate of ¢ and thus may be used when the number of

degrees of freedom for estimating o is small or even;
in some cases, when the “real” model actually in-
volves more than n# parameters. The method may also
be used to do subset selection or selection of principal
components instead of ridge regression, or even to
choose between various combinations of ridge, subset
selection or principal components methods A nu-
merical example, briefly suggestive of the behavior of
the method, has been carried out. It illustrates what
an experimenter might wish to do to examine the
properties of the method with respect to his/her de-
sign matrix.
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