

- For continuous inputs, we can view the problem as one of segmenting the input space into regions which belong to a single class, i.e. constant output.
- Such a segmentation is the "Voronoi tessellation" for our classifier.
- The boundaries between regions are the "decision surfaces".
- Training a classifier $==$ defining decision surfaces.

- Model original data as coming from joint pdf $p(\mathbf{x}, y)$.

Classification $==$ trying to learn conditional density $p(y \mid \mathbf{x})$.

- Even if we get the perfect model, our error rate may not be zero. Why? Classes may overlap.
- The best we could ever do if our cost function is number of errors is to guess $y^{*}=\operatorname{argmax}_{y} p(y \mid \mathbf{x})$.
(The error rate of this procedure is known as the "Bayes error".)

- Typical distance $=$ squared Euclidean $d(m, n)=\sum_{d}\left(x_{d}^{m}-x_{d}^{n}\right)^{2}$
- If Euclidean distance is used, decision surfaces are piecewise linear.

- Trick: remember the $K^{t h}$ smallest distance so far, and break out of the summation over dimensions if you exceed it.
- In low-d with lots of training points you can build "KD trees",
"ball trees" or other data structures to speed up the query time.
- In high-d, save time by computing the distance of each training point from the min corner and using the "annulus bound".
- Amazing fact: asymptotically, err(1-NN) < 2 err(Bayes):

$$
e_{B} \leq e_{1_{N N}} \leq 2 e_{B}-\frac{M}{M-1} e_{B}^{2}
$$

this is a tight upper bound, achieved in the "zero-information" case when the classes have identical densities.

- For K-NN there are also bounds. e.g. for two classes and odd K:

$$
e_{B} \leq e_{K_{N N}} \leq \sum_{i=0}^{(K-1) / 2}\binom{k}{i}\left[e_{B}^{i+1}\left(1-e_{B}\right)^{k-i}+e_{B}^{k-i}\left(1-e_{B}\right)^{i+1}\right]
$$

- For more on these bounds, see the book A Probabilistic Theory of Pattern Recognition, by L. Devroye, L. Gyorfi \& G. Lugosi (1996).
- Q: What are the parameters in K-NN? What is the complexity? A : the scalar K and the entire training set.
Models which need the entire training set at test time but (hopefully) have very few other parameters are known as nonparametric, instance-based or case based.
- What if we want a classifier that uses only a small number of parameters at test time? (e.g. for speed or memory reasons) Idea 1: single linear boundary, of arbitrary orientation Idea 2: many boundaries, but axis-parallel \& tree structured

- Take 16×16 grayscale images (8bit) of handwritten digits.
- Use Euclidean distance in raw pixel space (dumb!) and 7-nn.
- Classification error (leave-one-out): 4.85\%.

7 Nearest Neighbours

Linear Classification for Binary Output

- Goal: find the line (or hyperplane) which best separates two classes:

$$
c(x)=\operatorname{sign}[\mathbf{x}_{\text {weight }}^{\top} \mathbf{w}-\underbrace{w_{0}}_{\text {threshold }}]
$$

- \mathbf{w} is a vector perpendicular to decision boundary
- This is the opposite of non-parametric: only $d+1$ parameters!
- Typically we augment \mathbf{x} with a constant term ± 1 ("bias unit") and then absorb w_{0} into \mathbf{w}, so we don't have to treat it specially.

- Observation: If each class has a Gaussian distribution (with same covariances) then the Bayes decision boundary is linear:

$$
\mathbf{w}^{*}=\Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)
$$

$$
w_{0}^{*}=\frac{1}{2} \mathbf{w}^{\top}\left(\mu_{0}+\mu_{1}\right)-\mathbf{w}^{\top}\left(\mu_{0}-\mu_{1}\right)\left[\frac{\log p_{0}-\log p_{1}}{\left(\mu_{0}-\mu_{1}\right)^{\top} \Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)}\right]
$$

- Idea (Fisher'36):

Assume each class is Gaussian even
if they aren't!
Fit μ_{i} and Σ as sample mean and sample covariance (shared).

- This also maximizes the ratio of cross-class scatter to within class scatter: $\left(\overline{z_{0}}-\overline{z_{1}}\right)^{2} /\left(\operatorname{var}\left(z_{0}\right)-\operatorname{var}\left(z_{1}\right)\right)$
- The architecture we are using

$$
c(x)=\operatorname{sign}\left[\mathbf{x}^{\top} \mathbf{w}-w_{0}\right]
$$

can be thought of as

a circuit/network.

- It was studied extensively in the 1960s and is known as a perceptron.
- There is another way to train the weights, other than Fisher.

Algorithm perceptronTrain

(Rosenblatt'56)
$\mathrm{w} \leftarrow$ perceptronTrain(x-train, c-train) \{
$\mathrm{w}=$ ''small'' random values;
do \{ errors=0;

$$
\text { for } \mathrm{n}=1: \mathrm{N}\left\{\operatorname{if}\left(\mathrm{c}-\operatorname{train}(\mathrm{n}) \text { != } \operatorname{sign}\left[\mathrm{w}^{\prime} * x \operatorname{train}(\mathrm{n})\right]\right) \text { then }\{\right.
$$

$\mathrm{w}=\mathrm{w}+\mathrm{c}-\operatorname{train}(\mathrm{n}) * x \operatorname{train}(\mathrm{n})$; errors++; \} \}
\} until(errors==0)
\}

Handwritten Digits again
Train to discriminant " 5 " from others.
Error $=3.59 \%$

Perceptron Learning Rules

- Now: cycle through examples, when you make an error, add/subtract the example from the weight vector depending on its true class.
- Amazingly, for separable training sets, this always converges.
(We absorb the threshold as a "bias" variable always equal to -1.)
- For non-separable datasets, you need to remember the sets of weights which you have seen so far, and combine them somehow.
- One way: keep the set that survived unchanged for the longest number of (random) pattern presentations. (Gallant's pocket algorithm.)
- Better way: Freund \& Shapire's voted perceptron algorithm. Remember all sets and the length of time they survived.
- Perceptron, voted-perceptron, weighted-majority, kernel perceptron, Winnow, and other algorithms have a frumpy reputation but they are actually extremely powerful and useful, especially using the kernel trick. Try these before more complex classifiers such as SVMs!
- What if we want more than two regions?
- We could consider a fixed number of arbitrary linear segments but even cheaper is to use axis-aligned splits (one dimension each).
- If these form a hierarchical partition, then the classifier is called a decision tree or (axis-aligned) classification tree.
- Each internal node tests one attribute; leaves assign a class.
- Equivalent to a disjunction of conjunctions of constraints on attribute values (if-then rules).

- Need to pick the order of split axes and values of split points.

Many algorithms: CART, ID3, C4.5, C5.0.

- Almost all have the following structure:

1. Put all examples into the root node.
2. At each node: search all dimensions, on each one chose split which most reduces impurity; chose the best split.
3. Sort the data cases into the daughter nodes based on the split.
4. Recurse until a leaf condition:

- number of examples at node is too small
- all examples at node have same class
- all examples at node have same inputs

5. Prune tree down to some maximum number of leaves.
(Possibly using a different impurity measure than for growing.)

Cost Function for Decision Trees

- Define a measure of "class impurity" in a set of examples.

Push each example down the tree, how "pure" are leaves?

- Goal: minimize expected sum of impurity at leaves at test time.
- Two problems:

1) We don't know true distribution $p(\mathbf{x}, y)$.
2) Search: even if we knew $p(\mathbf{x}, y)$ finding optimal tree is NP.

- So we will take a suboptimal (greedy) approach.

Impurity Measures

- When considering splitting data D at a node on x_{i}, we measure:

$$
\operatorname{Gain}\left(D ; x_{i}\right)=I(D)-\sum_{v \in \operatorname{split}\left(x_{i}\right)} \frac{\left|D_{i v}\right|}{|D|} I\left(D_{i v}\right)
$$

- Common impurity measures:

Entropy: $I(D)=-\sum_{c} p_{c}(D) \log p_{c}(D) \quad$ (two classes)
Misclass: $I(D)=1-p_{c^{*}}$
Gini: $I(D)=\sum_{c} \sum_{c^{\prime} \neq c} p_{c}(D) p_{c^{\prime}}(D)$:

$$
=\sum_{c} p_{c}(D)\left(1-p_{c}(D)\right)
$$

(Gini is the avgerage error if we stochastically classify with node prior)

- These often favour multi-way splits.
- One solution: normalize by "split information":

$$
S(D)=-\sum_{v} \frac{\left|D_{i v}\right|}{|D|} \log \frac{\left|D_{i v}\right|}{|D|}
$$

- A better solution is to always constrain ourselves to binary splits.
- For ordered discrete or real valued nodes, split is natural. Also easy to compute.
- For a discrete attribute with M settings, looks like we need to consider $2^{M}-1$ splits. But for two classes, there is a trick:

1. Order the settings according to $p\left(c \mid x_{i}=m\right)$.
2. Search exhaustively over q, grouping first q and last $M-q$.
3. Optimal split is one of those.

root of decision tree $=$ SplitNode (train-data, nmin)
subtree \leftarrow SplitNode(D) \{
$\mathrm{c}=$ most common class in D
if (all class(D) same) or (all $x(D)$ same) or (size(D) < nmin) then return a leaf of class c
else for each xi measure Gain(D;xi)
return a node which splits on best $x i$ and has daughters:

- SplitNode(Div) for all split vals v with nonempty Div
- leaf of class c for values with empty Div
$\mathrm{G} \leftarrow \operatorname{Gain}(\mathrm{D}, \mathrm{i}) \quad\{$
$\mathrm{G}=\mathrm{I}(\mathrm{D})$
for each value v in split(xi)
Div = cases in D with xi=v
$\mathrm{G}=\mathrm{G}-\mathrm{I}(\mathrm{Div}) *$ size (Div)/size(D)
- Just as with most other models, decision trees can overfit. In fact they are quite powerful.
- eg: Expressive power of binary trees

Q: If all input and outputs are binary, what class of Boolean functions can DTs represent?
A: All Boolean functions.

- Hence we must regularize to control capacity.
- Typically we do this by limiting the number of leaf nodes.

Formally, we define: $\Phi(T)=\sum_{\text {leaves }} I(l)+\alpha \mid$ leaves \mid.

- Minimizing this for any α is equivalent to finding the tree of a fixed size with smallest impurity. (cf. Lagrange multipliers).
- Practically, we achieve this via pruning.

Often we use Gini/Entropy to grow tree and Misclass to prune it.

- Finding the "optimal" pruned tree.

It can be shown that if you start with a tree T_{0} and insist on using a rooted subtree of it, the following sequence of trees contains the optimum tree for all numbers of leaves:

1. Let $U($ node $)=I($ node $)-I($ subtree-rooted-at-node)
2. Replace the non-leaf node with the smallest value of: U(node)/leaves-below-node
with a leaf node having majority class.

- Even after pruning, decision trees still have problems:
- cannot capture additive structure (OR), for this MARS is better
- cannot deal with linear combinations of variables
- How do we chose K in K-NN? (Cross-validation)
- How do we chose $T_{\max }$ for decision trees? (Cross-validation)
- Can Fisher's Discriminant overfit? (What do you think?)
- What about nearest-neighbour or tree-based models for regression as well as classification? (Good idea!)

Next class: Logistic regression, Neural Nets for Classification, ClassConditional Models (Gaussian and Naive Bayes)

