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Algorithms Based on Vector Data 1

• Recall our normal approach to many classification, regression, and
unsupervised learning problems:
Embed the input to the problem into a vector space (e.g. Rn) and
then do some geometric, or linear algebraic operations.

•We can often make our algorithms more powerful by embedding the
data into a richer (larger) space which includes some fixed, possibly
nonlinear functions of the original measurements.

• For example, if we measure x1, x2, x3 for each datapoint, we might
use the representation z = [1, x1, x2, x3, x
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regression or classification machine.

•We’ve seen this trick before: adding a bias term, quadratic
regression, basis functions, generalized linear models.

• This trick has potential advantages (more power) and potential
disadvantages (more computation, potential for overfitting).

Feature Spaces 2

• The extended representation is called a feature space.

• An algorithm that is linear in the feature space may be highly
nonlinear in the original space if the features contain nonlinear
mappings of the raw data.

• Thus, we can think of having “promoted” our data x into a
higher-dimensional feature space z using a nonlinear mapping φ(x)
and then running our original algorithm in that new space.
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How Should We Use the Feature Space 3

• The feature point z = φ(x) corresponding to an input point x is
called the image of x; the input point x, if any, corresponding to a
given feature vector z is called the pre-image of z.

• The naive way to use a feature space is to explicitly compute the
image of every training point and testing point, and run our
algorithm completely in feature space.

• Two potential problems:

1. Problem: the feature space may be ultra-high dimensional or
even infinite dimensional, so direct (explicit) calculations in
feature space may not be practical or even possible.

2. We may sometimes want to “bring back” an answer from feature
space to input space and that involves finding pre-images which
is hard and not always possible.

•We could restrict ourselves to “manageable” feature spaces, but...



The Kernel Trick 4

• It turns out that for some special feature spaces z = φ(x), it is
possible to compute the inner product z⊤1 z2 between images of two
input points x1, x2 very efficiently. This is true when the
components of φ are the eigenfunctions of a special class of
positive definite functions called Mercer Kernels, in which case:

K(x1, x2) = z⊤1 z2 = φ(x1)
⊤φ(x2)

• The key idea of kernel machines is to reduce an algorithm to one
which depends only on dot products between data vectors and then
to replace the dot product evaluations in feature space with kernel
function evaluations in the input space.

• This “kernel trick” allows us to run algorithms in (very high
dimensional) feature spaces without ever going there, provided that
all we do are dot products and that we only represent feature space
points that are linear combinations of known input space images.

When the Kernel Trick Works 5

• The kernel trick allows us to efficiently compute dot products in
very high dimensional spaces using the kernel function, but it
doesn’t help us do addition, subtraction, outer products, etc.

• Not a big loss, since many interesting feature spaces are very high
or infinite dimensional, so we couldn’t even write down the results
of such operations anyway.

• Because of this, in general, everything we represent in the
high-dimensional feature space must be expressable as a linear

combination of the images of training data points.

• Actually this turns out to be fine for many problems, e.g. the
optimal weights in a perceptron classifier run in kernel space are
guaranteed to be representable. This is true of many other
algorithms, e.g. support vector machines. (There is more theory
about this under (surprise surprise) the “Representer’s Theorem”.
[originally by Kimeldorf and Wahaba, reproved by Schoelkopf et al]).

Properties of Kernels 6

• Kernels are symmetric in their arguments: K(x1, x2) = K(x2, x1).

• They are positive valued for any inputs: K(x1, x2) ≥ 0.

• The Cauchy-Schwartz inequality still holds:
K2(x1, x2) ≤ K(x1, x1)K(x2, x2).

• Technically, to use a function as a kernel, it must satisfy
“Mercer’s conditions” for a positive-definite operator.

• The intuition is easy to get for finite spaces.

1. Discretize x space as densely as you want into buckets xi.

2. Between each two cells xi, xj, compute the kernel function, and
write these values as a (symmetric) matrix Mij = K(xi, xj).

3. If the matrix is positive definite, the kernel is OK.

Examples of Kernels 7

• Linear: K(x1,x2) = x⊤1 x2 (φ(x) = x)

• Affine: K(x1,x2) = x⊤1 Qx2 (Q symmetric pos.def)

• Gaussian: K(x1,x2) = exp[−.5 ‖x1 − x2‖
2]

• Polynomial: K(x1,x2) = (1 + x⊤1 x2)
k (watch scaling!)

• Sigmoid: K(x1,x2) = tanh(a x⊤1 x2 + b)

• Closure rules:

– The sum of any two kernels is a kernel.

– The product of any two kernels is a kernel.

– A kernel plus a constant is a kernel.

– A scalar times a kernel is a kernel.



Geometry of Feature Space 8

•Dot product between two points = K(xi, xj) > 0, and so all points
lie in a single orthant in feature space.

• Length of a point in feature space:

‖zi‖
2 = K(xi, xi)

(so for Gaussian kernels, everybody lies on surface of unit sphere)

•Distance between two points in feature space:

‖z1 − z2‖
2 = K(x1, x1) + K(x2, x2)− 2K(x1, x2)

•Distance between a point and the mean of all others:

‖zk − z̄‖2 = K(xk, xk) +
1

N2

∑
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K(xi, xj)− 2
∑

i

K(xk, xi)

• Zero mean calculations in feature space:

< zi−z̄, zj−z̄ >= K(xi, xj)+
1

N2

∑

kℓ

K(xk, xℓ)−
∑

k

K(xk, xi)
∑

k

K(xk,

Gram Matrix 9

• The “Gram Matrix” is the N by N symmetric matrix of all pairwise
kernel evaluations: Gij = K(xi, xj).

• If you successfully “kernelize” an algorithm, then your algorithm will
only need to consult/compute entries of the Gram matrix as it runs,
because it depends only on dot products between the data points.

• An equivalent characterization (due to Saitoh) of Mercer’s
conditions is that a valid kernel generates symmetric positive
definite Gram matrices for any finite sample of raw data {xi}.

“Kernelizing” an Algorithm 10

• The art of designing a kernel machine is to take a standard
algorithm and massage it so that all references to the original data
vectors x appear only in dot products < xi, xj >.

•Often you can do this and obtain an exactly equivalent algorithm to
the one you started with.
Sometimes you need to make small modifications.

• Thus, a kernel machine contains two modules: the algorithm and
the kernel function. Choosing the kernel function is a hard problem
which we won’t discuss today.

• “Kernelizing” an algorithm can actually be pretty easy.
How about a few examples...

• Example: K-NN Classification:
Compute the distance between two points in feature space:

‖z1 − z2‖
2 = K(x1,x1) + K(x2,x2)− 2K(x1,x2)

Example: K-Means Clustering 11

•Distance between two points in feature space:

‖z1 − z2‖
2 = K(x1,x1) + K(x2,x2)− 2K(x1,x2)

• Represent cluster centres as linear combinations of data points:

ck =
∑

i

αikzi

•Distance between a new point and a cluster centre in feature space:

‖z− ck‖
2 = K(x,x) +

∑

ij

αikαjkK(xi,xj)− 2
∑

i

αikK(x,xi)

• True or false?
In regular K-Means (running directly in the input space), the cluster
centres are always linear combinations of the data points?

• Is Kernel K-Means a good idea or a dumb idea?



Example: Perceptron Classification 12

• The regular perceptron (hyperplane classifier) was:

f (x) = sign[w⊤x + b]

• To kernelize, we must represent the weights as linear combinations
of the input vector images (representer theorem says this is OK):

w =
∑

i

(αiyi)zi

• The original can be rewritten in terms of dot products:

f (z) = sign[
∑

i

(αiyi)z
⊤zi]

Kernel Perceptron 13

• The update rule for the weight vector in the perceptron can also be
rewritten in terms of dot products only.

•Old rule: if yiw
⊤xi + b ≤ 0 then w← w + yixi.

• Recall our new representation: w =
∑

i(αiyi)zi

• Equivalent new update rule:
if yi

∑
j αjyjz

⊤
i zj + b ≤ 0 then αi← αi + 1.

Example: Ridge Regression 14

• Think of the ridge regression cost function:∑
i(yi −w⊤xi)

2 + λ‖w‖2

minimizing this is equivalent to minimizing:∑
i η

2
i + λ‖w‖2 subject to ηi = (yi −w⊤xi).

• Let’s introduce Lagrange multipliers to enforce the constraints:
min

∑
i η

2
i + λ‖w‖2 +

∑
i αi(ηi − (yi −w⊤xi))

• Setting partial derivatives to zero gives:
w∗ = (1/2λ) +

∑
i αixi and ηi = αi/2

• Plugging back into the original cost gives:
min

∑
i yiαi −

1
4λ

∑
ij αiαjx

⊤
i xj −

1
4

∑
i α

2
i

• In matrix form:
miny⊤α− 1

4λα⊤Gα− 1
4α
⊤α

• Completely Kernelized!

Example: PCA 15

• Not convinced yet? Let’s do PCA using only dot products!

• Standard PCA (assume data is zero mean):

C =
1

N

∑

i

xix
⊤
i

λv = Cv

• All eigenvectors with nonzero eigenvalues must lie in the span of
the data, and thus can be written as linear combinations of the
data (think about why...):

v =
∑

i

αixi

• Now we can rewrite the eigenvector condition:

λ
∑

i

αixi =
1

N

∑

ij

αixjx
⊤
i xj



Example: PCA 16

• Eigenvector condition:

λ
∑

i

αixi =
1

N

∑

ij

αixjx
⊤
i xj

• Take the dot product with xk on left and right:

λ
∑

i

αix
⊤
kxi =

1

N

∑

ij

αix
⊤
kxjx

⊤
i xj

• The above is true for all k, so write it as a vector equation in α:

NλGα = G2α

Nλα = Gα

• Result: Form G, find its eigenvectors α, and use these to construct
linear combinations of original data points which are the
eigenvectors of the original covariance matrix.
(Careful! Zero mean and normalization of eigenvectors.)

Example: Fisher Discriminant 17

• See if you can figure this one out on your own...(or look it up)

• Hint: The optimal Fisher discriminant weight can be written as the
eigenvector corresponding to largest eigenvalue of a particular
matrix, which is the inverse of the average within-class covariance
times the average between-class covariance.

• Express the optimal weight as a linear combination of the examples
and the within-class and betwee-class covariances in terms of those
linear combination coefficients and the Gram matrix.

• You get a new eigenvector problem of size equal to the number of
datapoints as opposed to the dimension of the inputs.

The Desire for Sparsity 18

• In kernel machines, the principal trick is to convert the problem into
a dual form, which usually involves representing everything in the
feature space as a linear combination of images of the training
points: z =

∑
i αiφ(xi)

• Then we do all our calculations with the dual variables αi and we
never have to “touch” feature space directly.

• For very large datasets, it is desirable to have many of the
coefficients αi be exactly zero (sparsity) to reduce computational
load, especially at test time.

• As a separate trick, different from the kernel trick, we can look for
ways to make things sparse.

• These tricks are often confused, because the most famous kernel
machine (the SVM) used them both.

Controlling Overfitting 19

• A third aspect to kernel machines is how to control overfitting.

• For example, in the perceptron, if we use a very nonlinear kernel,
we might always be able to separate our data exactly.
Then we could be seriously overfitting.

•We can use weight decay to prevent this, by penalizing ‖w‖2 in
addition to trying to separate our training sample in the feature
space. This is equivalent to maximum margin.

• A deep motivation for weight decay in this context comes from
minimizing error bounds based on the “VC dimension” theory.

• This idea is often confused with the kernel & sparsity tricks because
the most famous kernel machine (the SVM) also used weight decay
to control overfitting and discussed the VC motivation.



Maximum Margin Hyperplane 20

•Margin = minimum distance to the plane of any point.

• Principle: of all the hyperplanes that separate the data perfectly,
pick the one which maximizes the margin

• Since the scale is arbitrary, we will set the numerical value of the
margin to be 1.

• Now maximizing the margin is equivalent to picking the separating
hyperplane that minimizes the norm of the weight vector:
min ‖w‖2 subject to yi[w

⊤xi + b] ≥ 1
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Maximum Margin = Minimum Norm 21

•Maximizing the margin is equivalent to picking the separating
hyperplane that minimizes the norm of the weight vector:
min ‖w‖2 subject to yi[w

⊤xi + b] ≥ 1

• Use Lagrange multipliers to enforce the constraint:
min ‖w‖2 −

∑
i αi(yi[w

⊤xi + b]− 1) αi ≥ 0

•We can convert it to dual form by setting partial derivatives to zero
and substituting.

• This is just like ridge-regression or weight decay.

•We can also allow some points to voilate the margin by being inside
it or even by being on the wrong size of it. This is achieved by
adding non-negative “slack variables” ξi and modifying the
constraints to the form:

yi[w
⊤xi + b] ≥ 1− ξi

Primal –> Dual 22

• Use Lagrange multipliers to enforce the constraint:
min ‖w‖2 −

∑
i αi(yi[w

⊤xi + b]− 1) αi ≥ 0

• set ∂/∂w = 0 and ∂/∂b = 0: w∗ =
∑

i yiαixi
∑

i yiαi = 0

• The dual problem is now: min
∑

i αi −
1
2

∑
ij αiαjyiyjx

⊤
i xj

αi ≥ 0
∑

i yiαi = 0

• This is a quadratic programming problem.

• It is convex. Unique solution!

• If we are allowing slack, we must also penalize the total amount of
slack by adding

∑
i ξi to the (primal) objective function.

Sparsity of Solution 23

• Not only is the solution unique, but it is also sparse.

•Only the training points nearest to the separating hyperplane (ie
with margin exactly 1) have αi > 0. These points are called the
“active” points, or the support vectors since the final weight vector
depends only on them:

w∗ =
∑

i

yiαixi

• This is a lucky coincidence that has confused many people: in the
case of SVM classification the two goals of controlling overfitting
and inducing sparsity can both be achieved simultaneously with
only a single trick: maximum margin (minimum weight norm).

• But it is not always like this.



The Geometry of Sparsity 24
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Support Vector Machines 25

• A support vector machine (SVM) is nothing more than a kernelized
maximum-margin hyperplane classifier.

• You train it by solving the dual quadratic programming problem.

• You run it by evaluating the kernel function between the test point
and each of the “active” training points, called support vectors.

• This combination of (1) kernel trick, (2) maximum margin
(minimum norm) and (3) the resulting sparsity has turned out to be
very effective and popular.

• In practice, the hard part from a learning point of view is selecting
the kernel function (there is a lot of research on this) and from a
computational point of view it is solving the large QP efficiently.

Sparsity in Regression 26

• To introduce sparsity in regression, Vapnik introduced the
epsilon-insensitive loss function:

l(ŷ) = 0 if |y − ŷ| ≤ ǫ

l(ŷ) = |y − ŷ| if |y − ŷ| > ǫ

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

Lots More To Say/Read 27

• Theoretical origins of support vector machines: VC Dimension,
Error Bounds, structural risk minimization, ...

• Variations of SVMS, including the ν-SVM, 1-norm SVM, 1-class
SVM, etc.

• Kernelized versions of lots of standard algorithms (PCA, Fisher’s
discriminant, Canonical Correlations Analysis, ...)

•Other kernel machines (e.g. Gaussian processes, links to boosting)

• see http://www.kernel-machines.org

for lots of papers/tutorials, etc. Also several books:



Thanks! It’s been fun! 28

• Last class.
Projects due Dec15, noon, by email to csc2515@cs
(attachment/url)
Postscript or PDF ONLY, in NIPS format, max 5 pages.
Readings must be also completed by Dec15, noon, (use the web
form)

• Thanks for sticking with it.
Hope you learned something, and had fun also.
Sorry about all the math and about A2.

• Please send me comments/corrections for the notes
so I can improve next year’s course.


