
CSC2515 – Machine Learning Sam Roweis

Lecture 12:

Meta-Learning Methods

November 28, 2006

Meta-Learning 1

• The idea of meta-learning is to come up with some procedure for
taking a learning algorithm and a fixed training set, and somehow
repeatedly applying the algorithm to different subsets (weightings)
of the training set or using different parameters/choices within the
algorithm in order to get a large ensemble of machines.

• The machines in the ensemble are then combined in some way to
define the final output of the learning algorithm (e.g. classifier)

• The hope of meta-learning is that it can “supercharge” a mediocre
learning algorithm into an excellent learning algorithm, without the
need for any fancy new algorithms!

• There is, as always, good news and bad news....

– The Bad News: there is (quite technically) No Free Lunch.

– The Good News: for many real world datasets, meta learning
works very well.

No Free Lunch 2

•David Wolpert and others have proven a series of theorems, known
as the “no free lunch” theorems which, roughly speaking, say that
unless you make some assumptions about the nature of the
functions or densities you are modeling, no one learning algorithm
can a priori be expected to do better than any other algorithm.

• In particular, this lack of clear advantage includes any algorithm
and any meta-learning procedure applied to that algorithm. In fact,
“anti-cross-validation” (i.e. picking the regularization parameters
that give the worst performance on the CV samples) is a priori just
as likely to do well as cross-validation. Without assumptions,
random guessing is no worse than any other algorithm.

• So capacity control, regularlization, validation tricks and
meta-learning cannot always be successful.

Generalization Error vs. Learning Error 3

• A key issue here is the difference between test error on a test set
drawn from the same distribution as the training data (may contain
duplicates) and out of sample test error.

• Remember back to the first class:
learning binary functions.
No assumptions == no generalization on
out of sample cases. (The only way to
learn is to wait until you have seen the
whole world and memorize it.)

• Luckily, we can make some progress in
real life. Why? Because the assumptions
we make about function classes are often
partly true.

x1 x2 x3 y
0 0 0 1
0 1 1 0
1 1 0 1

0 01 ?
1 0 1 ?

Meta-Learning Cafeteria 4

•Many meta-learning methods that work well in practice.

•We will review the three main ones:

– Bagging: apply your algorithm to bootstrap datasets and average
the predictions of the resulting ensemble.

– Stacking: define a set of models by restricting the input to
subsets of various sizes. Use LOO-CV to choose weights which
blend these models.

– Boosting: iteratively reweight your dataset, placing higher
weights on the examples you are getting wrong. At each
iteration, refit and add the result to your ensemble.

•Q: What do we apply meta-learing to?
A: Weak models, e.g. decision stumps, linear regressors/classifiers.

•Meta-learning for classification/regression is well understood, but
meta-learning for unsupervised learning is still an open problem.

Why does Meta-Learning Work? 5

• Either reduces variance substantially without affecting bias
(bagging, stacking), or vice versa (boosting).

• All meta-learning is based on one of two observations:
A) Variance Reduction: If we had completely independent training

sets it always helps∗ to average together an ensemble of learners
because this reduces variance without changing bias.
B) Bias Reduction: For many simple models, a weighted average of
those models (in some space) has much greater capacity than a
single model (e.g. hyperplane classifiers, single-layer networks,
Gaussian densities). So averaging models can often reduce bias
substantially by increasing capacity; we can keep variance low by
only fitting one member of the mixture at a time.

* see last page of notes

Bagging (Breiman 1994) 6

• Bagging ≡ bootstrap aggregation.

• Idea is simple. Generate B bootstrap samples from your original
training set. Train on each one to get fb. Now average them:

fbag =
1

B

∑

b

fb

• For regression, average predictions.
For classification, average class probabilities
(or take the majority vote if only hard outputs available).

• Bagging approximates the Bayesian posterior mean. The more
bootstraps you use, the better, so use as many as you have time for.

• The size of each bootstrap sample is equal to the size of the
original training set, but they are drawn with replacement, so each
one contains some duplicates of certain training points and leaves
out other training points completely.

Finite Bagging Can Hurt 7

• Bagging helps when a learning algorithm is good on average but
unstable with respect to the training set.

• But if we bag a stable learning algorithm, we can actually make it
worse. (For example, if we have a Bayes optimal algorithm, and we
bag it, we might leave out some training samples in every bootstrap,
and so the optimal algorithm will never be able to see them.)

• Bagging almost always helps with regression, but even with
unstable learners it can hurt in classification.
If we bag a poor & unstable classifier we can make it horrible.

• Example: true class = A for all inputs.
Our learner guesses class A with probability 0.4 and class B with
probability 0.6 regardless of the input. (Very unstable!).
It has error 0.6.
But if we bag it, it will have error 1.

Stacking (Wolpert 1990) 8

• In bagging, we created an ensemble of models by creating many
synthetic training sets using the bootstrap.

•We can also create an ensemble of models in other ways, e.g. by
restricting each model to look at only a subset of inputs, by trying
the whole “kitchen sink” of regressors or classifiers (e.g. neural nets
vs. logistic regression vs. naive bayes vs. KNN), by using a variety
of regularization parameters, etc.

• In stacked generalization or stacking we try to find the best
nonuniform weights to average our models together:

fstack(x) =
∑

m

wmfm(x)

• How should we set the weights? Using training error of each model?
No! This will put too much weight on the most complex models.

Setting the Stacking Weights 9

•We estimate the optimal weights by setting them to minimize the
average leave-one-out cross validation error:

w∗m = arg min
w

N
∑

i=1

[

yi −
∑

m

wmf−i
m (xi)

]2

where f−i
m is the result of model m trained on all points except i.

• These weights can be found exactly using linear regression.

• This is like a generalization of model selection using LOO-CV.
Previously we picked the best model and set wmbest = 1 and all
other wm = 0. Now we are doing a smooth weighting.

• In more advanced stacking ideas, we can combine the models
nonlinearly and use weights which depend on the input x. This is
like a mixture of experts where we fit the gate using cross-validated
training points instead of the usual training set.

Boosting (Shapire 1990) 10

• Probably one of the four most influential ideas in machine learning
in the last decade, along with Kernel methods, Variational
approximations, and Convex programming.

• In the PAC framework, boosting is a way of converting a “weak”
learning model (behaves slightly better than chance) into a
“strong” learning mode (behaves arbitrarily close to perfect).

• Very amazing theoretical result, but also led to a very powerful and
practical algorithm (AdaBoost) which is used all the time in real
world machine learning. Basic idea: divide and conquer.

• For binary classification with y = ±1.

fboost(x) = sign

[

∑

m

αmfm(x)

]

where fm(x) are models trained with reweighted datasets Dm, and
the weights αm are non-negative.

AdaBoost Algorithm (Freund & Schapire 1997) 11

• Set initial observation weights wi = 1/N . Set m = 1.

• Loop while (errm < .5) {

– Fit the base classifier to the training data weighted by wi.
This results in the mth round classifier fm(x).

– Compute errm =
∑

i wiemi/
∑

i wi
(emi = 1 if sign[yi] 6=sign[fm(xi)])

– Set αm = 1
2 log[(1− errm)/errm]

– Set wi← wi exp[2αmemi]

– m← m + 1
}

• Final classifier is a weighted majority vote:

fboost(x) = sign

[

∑

m

αmfm(x)

]

Some Intuitions about Boosting 12

• At each round, boosting increases the weight on those examples the
last classifier got wrong, and decreases the weight on those it got
right. Thus, over time, it focusses on the examples that are
consistently difficult and forgets about the ones that are
consistently easy.

• The weight each intermediate classifier gets in the final ensemble
depends on the error rate it achieved on its weighted training set at
the time it was created.

• The reweighting over observations selected by boosting at each
round is such that the previous classifier would perform at chance
and so that the cross entropy between the previous weights and the
new weights is minimized.

Boosting tries to minimize Exponential Loss 13

• An amazing fact, which helps a lot to understand how boosting
really works, is that classification boosting is equivalent to fitting a
greedy forward additive model using the following cost function:

cost[y, f (x)] = exp(−yf (x))

• This is called exponential loss and it is very similar to other kinds of
loss, e.g. classification loss.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

y ⋅ f(x)

lo
ss

misclass
exponential
bionomial
squared err
SVM

Forward Stagewise Additive Modeling 14

• Recall the additive model setup:

fadd(x) =
∑

m

αmfm(x; θm)

• The overall function is a weighted sum of simpler functions, each
with their own set of parameters.
e.g.: hidden units in a MLP, wavelets, nodes in trees

• The optimization problem of finding the best {α} and {θ}
simultaneously is usually extremely hard.

• But we can use a greedy approximation:

– Initialize f0 = 0.

– for m = 1 : M {

set αm, θm = arg minα,θ
∑N

i=1 cost[yi, fm−1(xi) + αf (xi; θ)]
set fm(x) = fm−1(x) + αmf (x; θm)
}

Boosting as Forward Additive Modeling 15

• At each round of boosting we must minimize:

C =

N
∑

i=1

exp[−yi(fm−1(xi) + αmf (xi; θm))]

=

N
∑

i=1

wm
i exp[−αmyif (xi; θm)]

with respect to αm and θm, where wm
i = exp(−yifm−1(xi)).

• The optimal function and weight are given by:

errm =

N
∑

i=1

wm
i [yi 6= f (xi; θm)]/

∑

i

wm
i

θ∗m(x) = arg min
θ

errm

α∗m =
1

2
log

1− errm

errm

Updating the observation weights 16

• Finally, we update our approximation to get

fm(x) = fm−1(x) + α∗mf (x; θ∗m)

• This sets the new weights:

wm+1
i = wm

i exp[−αmyif (xi; θ
∗
m)]

= wm
i exp[αm(2emi − 1)]

= wm
i exp[2αmemi] exp[−αm]

where the last factor of exp[−αm] just rescales all the weights
uniformly, so we can drop it.

More on Exponential Loss 17

• Exponential loss is very similar to other classification losses.

• It is minimized by setting f (x) to one half the log-odds:

f∗(x) =
1

2

Prob[y = 1|x]

Prob[y = −1|x]

which means we can interpret f (x) as the logit transform.

• Another loss function with the same population minimizer is the
binomial negative log-likelihood:

− log(1 + exp(−2yf (x)))

• But binomial loss places less emphasis on the bad cases (high
negative margin), and so it is more robust when data is noisy.
Optimizing this is called logit-Boost.

• Boosting can also be thought of as trying to maximize a “margin”
(like SVMs) but with a 1-norm constraint on the weights instead of
a 2-norm constraint.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

y ⋅ f(x)

lo
ss

misclass
exponential
bionomial
squared err
SVM

Variance Reduction by Averaging 19

• Here is an argument showing why averaging across independent
training sets always reduces expected squared error:

¯err1 =
∑

x,y

p(x, y) (y − f (x|ts1))
2

¯err = 〈〈
[

y2 − 2yf (x|ts) + f2(x|ts)
]

〉x,y〉ts = 〈 ¯err1〉ts

fmeta(xtest) =
1

T

∑

i

f (xtest|tsi) = 〈f (xtest|ts)〉ts

¯errmeta =
∑

x,y

p(x, y)(y − 〈f (x|ts)〉ts)
2

= 〈
[

y2 − 2y〈f (x|ts)〉ts + (〈f (x|ts)〉ts)
2
]

〉x,y

≤ 〈
[

y2 − 2y〈f (x|ts)〉ts + 〈f2(x|ts)〉ts

]

〉x,y

≤ ¯err since 〈f〉2 ≤ 〈f2〉

