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Generalization, Overfitting, Underfitting 1

• The generalization of a machine learning method is the performance
(classification, regression, density estimation) on test data, not
used for training, but drawn from the same (joint) distribution as
the training data. Often, our real goal is to get good generalization.

•When our model is too complex for the amount of training data we
have, it memorizes parts of the noise as well as learning the true
problem structure. This is called overfitting or model variance.

•When our model is not complex enough, it cannot capture the
structure in our data, no matter how much data we give it.
This is called underfitting or model bias.

• An unbiased model is one which given enough data will eventually
learn the correct model. But if all we care about is generalization
and we only have a finite amount of data then we should be happy
to introduce a little bit of bias if it reduces the variance a lot.

Typical Behaviour 2
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Model Selection: Bias-Variance Tradeoff 3

• Amongst all the models we can think of (and can train), we need to
select one to use for making predictions. (For now, at least. Later
we’ll see how to combine the predictions of several models.)

•What basic problems are we trying to avoid with model selection?

•Overfitting: if we chose a model that is too complex, it will overfit
to the noise in our training set. Another way of saying this is that
the machine we end up with is very sensitive to the particular
training sample we use. The model has a lot of variance across
training samples of a fixed size.

• Underfitting: if we chose a model that is not complex enough, it
cannot fit the true structure, and so no matter what training
sample we use there is some error between the true function and
our model approximation. The model has a lot of bias.

• Intuitively, we need the right balance. How can we formalize this?



Bias-Variance Decomposition of Squared Error 4

• Let us consider a supervised learning setup (scalar for now), with
random noise (uncorrelated to inputs/outputs) and squared error:

y = g(x) + noise true function

ŷ = f (x) our prediction

error = (y − ŷ)2

• Consider the expected error at a single test point x0, averaged over
all possible training sets of size N , drawn from the joint
distribution over inputs and outputs p(x, y) = p(x)p(y|x).

e(x0) = 〈(y0 − ŷ0)
2〉

= 〈(g(x0) + ǫ0 − ŷ0)
2〉

= 〈ǫ2
0〉 + (〈f (x0)〉 − g(x0))

2 + 〈f (x0) − 〈f (x0)〉〉
2

= σ2 + (mean[f (x0)] − g(x0))
2 + var[f (x0)]

= Unavoidable Error + Bias2 + Variance

Example: polynomial fitting 5
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Model Selection & Performance Estimation 6

•Model Selection: out of a set of models (or continuum of model
complexity), choose the model which will perform the best on
future test data.

•Model Assessment: for the selected model, estimate its
generalization error on new data.

• If we have lots of data, these two problems can be solved by
dividing our data into 3 parts:

– Training Data – used to train each model

– Validation Data – used to measure performance of each trained
model in order to select the best model

– Assessment Data – used only once, on the final selected model,
to estimate performance on future test data

• Typical split is 60% training, 20% validation, 20% assessment.
So that’s it, are we done?

Approximations when Data is Limited 7

•Often, we don’t have enough data to make 3 separate and
reasonably sized training, validation and assessment sets.

• If we don’t have very much data, we can try to approximate the
results of validation and assessment.

• Two basic approaches for finite datasets:

– Analytic methods: derive algebraic expressions which try to
approximate the test error, e.g. using a complexity penalty which
scales as the ratio between the number of parameters in the
model and the number of training cases.
Examples: BIC, AIC, MDL, VC-dimension.

– Sample-recycling methods: try to estimate the test error
computationally, using the same data that we trained on.
Examples: jackknife,cross-validation, bootstrap.



Regularization and Capacity Control 8

• How can we improve generalization? Reduce either bias or variance!

•One obvious way: use more training data, and commensurately
more complex models. If we scale up model complexity slowly
enough, using more data reduces both bias and variance.

• But what if we can’t get more data?
Our goal should be to reduce variance (by using simpler models)
while not increasing our bias too much (by not using too simple a
model). We should not force ourselves to use unbiased (Bias=0)
models, because we only really care about the sum Bias2+Variance.

•We need a knob to control this tradeoff (e.g. by discretely
constraining model structure or by continuously regularizing model
complexity or smoothness) and a way to set the knob (i.e. decide
on the right tradeoff balance).

One Kind of Knob: Model Structure 9

•We can control the structure of our model as a way
of determining its complexity.

• This includes the number of hidden units in a
multilayer perceptron neural network, the number
of clusters in a mixture of Gaussians or K-Means
model, the number of experts in a mixture of
experts, the number of latent factors in FA/PCA.

•Model structure also includes sparsity, i.e.
specifying which weights are zero and which are
nonzero. This is useful in diagonal-covariance
Gaussian noise estimates, constrained HMM
transition matrices, variable subset selection for
regression, local-receptive field vision networks, etc.
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Another Regularizer: Parameter Sharing 10

• Another way to control model complexity is to tie

together or share various parameters. This allows
us to have a complete model structure but not
have to estimate a huge number of free parameters.

• This is used in mixtures of factor analyzers, to
jointly estimate the sensor noises, in mixtures of
Gaussians to jointly estimate cluster covariances
(e.g. Fisher’s discriminant is a class-conditional
Gaussian model with shared covariances), in vision
neural networks to learn translation-invariant
receptive fields, etc.
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More Regularization: Method with Local Support11

• Yet another way to control model complexity is to restrict the
amount of training data that can be used to predict the output on
any new test case.

• Each test case prediction is only allowed to use a small fraction of
the training data, typically the training points whose inputs are
close to the input of the test case.

• This is known as a locally weighted method, e.g. nearest neighbour
classification, Parzen density estimation, locally weighted regression.

• Local methods are related to “semi-parametric” models, which try
to use the reservoir of training data to store most of the bits of
their capacity, and only have a few “metaparameters” which control
how that reservoir is used at test time.
Examples: K-NN classifier, locally-weighted regression, Parzen
window density estimators



Regularization by adding a penalty term 12

• Instead of discrete complexity controls, it is often useful to have a
continuous range of complexity, set by one or more real valued
“fudge-factors” or “hyperparameters”.

• The most common way to achieve this is to add a “penalty term”
to the cost function (error, log likelihood, etc) which measures in a
quantitative and continuous way how complex/simple our model is:

cost(θ) = error(data, θ) + λpenalty(θ)

•We can then weight this penalty term relative to the original error
(or likelihood) and minimize the resulting penalized cost.

• The larger the penalty weight λ, the simpler our model will be.

• How can we set λ? If we have lots of data, we can use the
performance on a held out set of validation examples to determine
the correct value of the penalty weight.

Example Penalty: Weight Decay 13

• The most common regularization is the ridge regression penalty
(weight decay) which discourages large parameter values in
generalized linear models:

cost(θ) = error(data, θ) + λ
∑

k

θ2
k

• This says: “don’t use big weights unless they really help to reduce
your error a lot”. Otherwise, there is nothing to stop the model
from using enormous positive and negative weights to gain a tiny
benefit in error.

• Remember: on a finite training set, there will always be some tiny,
accidental correlation between the noise in the inputs and the
target values.

Example Penalty: Early Stopping 14

• Another approach to regularization in models whose complexity
grows with training time is to stop training early.

• This works quite well in neural networks, since small weights mean
that the network is mostly linear (low complexity) and it takes a
while for the weights to get bigger, giving nonlinear networks (high
complexity). Essentially a penalty equal to # training iterations.

• A validation set can be used to detect stopping point.
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Example Penalty: AIC/BIC 15

• There are also asymptotic “parsimony criteria” derived from
theoretical assumptions which attempt to penalize model
complexity in a way that would result in a good estimate of test
error if we had an infinite amount of data.

• The two most popular are the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC) both of which apply
to probabilistic models:

AIC = L̄ − P/N

BIC = L̄ −
1

2
P log N/N

where L̄ is the average log likelihood of the training points under
the model, P is the number of “free” parameters, and N is the
number of “independent” datapoints.

• Asymptotically, AIC performs like leave-one-out cross validation and
BIC performs like carefully chosen K-fold cross validation.



Issues in High Dimensions 16

• As the dimensionality of the input and output variables in a learning
problem grows, the naive approach to most problems requires
exponentially more training data to get good generalization.

• This is known as the “curse of dimensionality”. In general, it
affects density estimation, regression, clustering and classification.

• Example: if we divide pixel intensities into L levels, and we examine
d pixels, there are Ld possible images. A learning algorithm which
just memorizes (finds all exact occurrences of a test image in its
training set) needs an exponential amount of data to have even one
example of each image.

•We must always regularize to generalize, say by constraining our
models (e.g. Naive Bayes) or by doing dimensionality reduction on
the input (e.g. with FA/PCA). But we can also try to adjust our
training procedure (as opposed to our models) in order to improve
performance.

Potential Pitfalls 17

• Several things can cause us trouble when we are trying to get good
generalization from a learning algorithm:

– we might not have enough training data to learn target concept

– our testing might not really be from the same distribution
as our training data

– our model might not be complex enough, so it underfits

– our model might be too complex, so it overfits

– we have too much training data to run the algorithm in a
reasonable amount of time or memory

• Sounds hopeless!
What can we do? ?

Practical Solutions 18

• Several simple ways to good generalization in practice.

• Use model classes with flexible control over their complexity.
(e.g. ridge regression, mixture models)

• Employ regularization (capacity control) and (cross) validation,to
match model complexity with the amount of data available.

• Build in as much reliable prior knowledge as possible, so algorithms
don’t have to waste data learning things we already know.

• Use cross-validation/bootstrap to make efficient use of limited data.

• Use subsampling or sparse methods to speed up algorithms on huge
training sets, and keep them fast and small at test time.

Cross Validation (CV) / Jackknife 19

• Instead of setting aside a separate validation set, we can leave out
part of our data, train on the rest, measure errors on the part we
left out, and then repeat, leaving out a different bunch of data.

• If we break our data into K equal groups, and cycle through them,
leaving out one at a time, this is known as K-fold cross validation.

• The cost function is the average training error across all folds, and
our estimate of the validation error is the average of all validations.

•Our validation error estimates are biased, because the same data is
also used to train the model during the other folds of cross
validation. But we don’t waste any data.

• If we leave out only one data point at a time, this is leave-one-out

cross validation (LOO), sometimes called the jackknife estimator.

• LOO is my favourite way to set everything!



Potential Problems with Cross-Validation 20

• CV is awesome and it can be used on clustering, density estimation,
classification, regression, etc.

• But intensive use of cross-validation can overfit, if you explore too
many models, by finding a model that accidentally predicts the
whole training set well (and thus every leave-one-out sample well).

• CV can also be very time consuming if done naively.

•Often there are efficient tricks for computing all possible
leave-one-out cross validation folds, which can save you a lot of
work over brute-force retraining on all N possible LOO datasets.

• For example, in linear regression, the term (
∑

n 6=ℓ xnx
⊤
n)−1 which

leaves out datapoint ℓ can be computed using the matrix inversion
lemma: (

∑
n xnx

⊤
n − xℓx

⊤
ℓ )−1.

• This is also true of the Generalized Cross Validation (GCV)
estimate of Golub and Wahaba. (see extra readings)

Bootstrap (Efron 1979) 21

• A similar idea to CV, in that it re-uses samples to generate a large
number of datasets. Both CV and bootstrap try to use
computational power in situations where theoretical calculations are
not possible. (e.g. standard error of mean is easy to derive, but
what about standard error of median or correlation coefficient?)

• In the bootstrap, we generate datasets by sampling the original

training data with replacement to get a set the same size as the
original. (If we do this B times, this is a B-fold bootstrap.)

•We can then measure our statistic of interest (e.g. classification
performance) using the examples left out of each bootstrap sample
(if any). The average of these bootstrap estimates is a conservative
approximation of our validation estimate. (A better approximation
involves blending between this bootstrap average and the training
error when trained on the whole dataset.)

Model Averaging 22

•One last way to reduce variance, while not affecting bias too
severely, is to average together the predictions of a bunch of
different models.

• These models must be different in some way, either because they
were trained on different subsets of the data, or with different
regularization parameters, different local optima, or something.

•When we average them together, we would like to weight more
strongly the models we believe are fitting the data better.

• Such systems are often called committee machines.

• Really, this is just a weak form of Bayesian learning.
MAP = estimate of mode of posterior over models
Bagging (next class) = estimate of mean of posterior over models
BIC/AIC = estimates of correct predictive distribution

Bayesian Programme 23

• In Bayesian learning, we think of the parameters as random
variables, just like the data.

•We have a prior over parameters, p(θ) and a model of how data
can be generated given any particular set of parameters: p(data|θ).

•Our goal is to do parameter inference, i.e. to infer the posterior
over parameters: p(θ|data).

•When we make predictions, we should integrate over all possible

parameter settings, weighting each one by its posterior.

• This is the ultimate in model averaging.

• The marginal likelihood, log p(data) = log
∫
θ′ p(data|θ′)p(θ′) is

what tells us how well our model fits the data.
It is sometimes called the “evidence”.

•Much more to say on this topic.
See Mackay, Neal, Ghahramani, Bishop.



Regularization as Parameter Priors 24

•We can think of the penalty term in regularization as being the
logarithm of prior probabilities on our parameters.

•We can think of the error term as being the logarithm of the
probability of the data given the parameters.

• Then minimizing the regularized error is equivalent to minimizing
the posterior over parameters give the data and our priors.

log p(θ|data) = log p(data|θ) + log p(θ) − log p(data)

= error(data, θ) + λpenalty(θ) + constant

where log p(data) = log
∫
θ′ p(data|θ′)p(θ′).

• So the Bayesian method includes all regularization methods as a
special case, if you chose a prior over parameters which is
p(θ) ∝ exp(λpenalty(θ)).

• Key question: what’s the chance of drawing some parameters from
the prior and then, using those parameters, generating the data?

Ockham’s Razor 25
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We want to use the simplest model which explains the data well.
[A now famous figure, first introduced by Mackay.]

Meta-Learning 26

• The idea of meta-learning is to come up with some procedure for
taking a learning algorithm and a fixed training set, and somehow
repeatedly applying the algorithm to different subsets (weightings)
of the training set or using different random choices within the
algorithm in order to get a large ensemble of machines.

• The machines in the ensemble are then combined in some way to
define the final output of the learning algorithm (e.g. classifier)

• The hope of meta-learning is that it can “supercharge” a mediocre
learning algorithm into an excellent learning algorithm, without the
need for any new ideas! (Details next class.)

• There is, as always, good news and bad news....

– The Bad News: there is (quite technically) No Free Lunch.

– The Good News: for many real world datasets, meta learning
works well because its implicit assumptions are often reasonable.

No Free Lunch 27

•David Wolpert and others have proven a series of theorems, known
as the “no free lunch” theorems which, roughly speaking, say that
unless you make some assumptions about the nature of the
functions or densities you are modeling, no one learning algorithm
can a priori be expected to do better than any other algorithm.

• In particular, this lack of clear advantage includes any algorithm
and any meta-learning procedure applied to that algorithm. In fact,
“anti-cross-validation” (i.e. picking the regularization parameters
that give the worst performance on the CV samples) is a priori just
as likely to do well as cross-validation. Without assumptions,
random guessing is no worse than any other algorithm.

• So capacity control, regularlization, validation tricks and
meta-learning (next class) cannot always be successful.



Generalization Error vs. Learning Error 28

• A key issue here is the difference between test error on a test set
drawn from the same distribution as the training data (may contain
duplicates) and out of sample test error.

• Remember back to the first class: learning binary functions.
No assumptions == no generalization on out of sample cases.

• The only way to learn is to wait until you have seen the whole
world and memorize it.

• Luckily, we can make some progress in real life.

•Why? Because the assumptions we make about function classes are
often (partly) true.


