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Probability

• We use probabilities p(x) to represent our beliefs B(x) about the
states x of the world.

• There is a formal calculus for manipulating uncertainties
represented by probabilities.

• Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:
if B(x) > B(y) and B(y) > B(z) then B(x) > B(z)

2. Belief in x and its negation x̄ are related: B(x) = f [B(x̄)]

3. Belief in conjunction depends only on conditionals:
B(x and y) = g[B(x), B(y|x)] = g[B(y), B(x|y)]

Random Variables and Densities

• Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(x) to mean probability(X = x).

• Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)

• Probability mass (density) function p(x) ≥ 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity:

∑

x p(x) = 1 or
∫

x p(x)dx = 1.
Intuitively: how often does x occur, how much do we believe in x.

• Ensemble: random variable + sample space+ probability function

Expectations, Moments

• Expectation of a function a(x) is written E[a] or 〈a〉

E[a] = 〈a〉 =
∑

x

p(x)a(x)

e.g. mean =
∑

x xp(x), variance =
∑

x(x− E[x])2p(x)

• Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

• Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

• Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.



Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

• We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)
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Marginal Probabilities

• We can ”sum out” part of a joint distribution to get the marginal

distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.
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• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)
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Bayes’ Rule

• Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∑

x′ p(y|x′)p(x′)
• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)



Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Be Careful!

• Watch the context:
e.g. Simpson’s paradox

• Define random variables and sample spaces carefully:
e.g. Prisoner’s paradox

Entropy

• Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

•H(p) > 0 unless only one possible outcomein which case H(p) = 0.

• Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p‖q] =
∑

x

p(x)[log p(x) − log q(x)]

•KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).



Statistics

• Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

• Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

• Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

Some (Conditional) Probability Functions

• Probability density functions p(x) (for continuous variables) or
probability mass functions p(x = k) (for discrete variables) tell us
how likely it is to get a particular value for a random variable
(possibly conditioned on the values of some other variables.)

• We can consider various types of variables: binary/discrete
(categorical), continuous, interval, and integer counts.

• For each type we’ll see some basic probability models which are
parametrized families of distributions.

(Conditional) Probability Tables

• For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(xi = kth value).

• Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k − 1 free parameters.

• If a discrete variable is conditioned on the values of some other
discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.
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Exponential Family

• For (continuous or discrete) random variable x

p(x|η) = h(x) exp{η>T (x) − A(η)}
=

1

Z(η)
h(x) exp{η>T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Key idea: all you need to know about the data is captured in the
summarizing function T (x).



Bernoulli

• For a binary random variable with p(heads)=π:

p(x|π) = πx(1 − π)1−x

= exp

{

log

(

π

1 − π

)

x + log(1 − π)

}

• Exponential family with:

η = log
π

1 − π
T (x) = x

A(η) = − log(1 − π) = log(1 + eη)

h(x) = 1

• The logistic function relates the natural parameter and the chance
of heads

π =
1

1 + e−η

Poisson

• For an integer count variable with rate λ:

p(x|λ) =
λxe−λ

x!

=
1

x!
exp{x log λ− λ}

• Exponential family with:

η = log λ

T (x) = x

A(η) = λ = eη

h(x) =
1

x!

• e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity λ

• Other count densities: binomial, exponential.

Multinomial

• For a set of integer counts on k trials

p(x|π) =
k!

x1!x2! · · · xn!
π
x1
1 π

x2
2 · · · πxnn = h(x) exp







∑

i

xi log πi







• But the parameters are constrained:
∑

i πi = 1.

So we define the last one πn = 1 −∑n−1
i=1 πi.

p(x|π) = h(x) exp
{

∑n−1
i=1 log

(

πi
πn

)

xi + k log πn

}

• Exponential family with:

ηi = log πi − log πn
T (xi) = xi
A(η) = −k log πn = k log

∑

i e
ηi

h(x) = k!/x1!x2! · · · xn!

• The softmax function relates the basic and natural parameters:

πi =
eηi

∑

j e
ηj



Gaussian (normal)

• For a continuous univariate random variable:

p(x|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

=
1√
2πσ

exp

{

µx

σ2
− x2

2σ2
− µ2

2σ2
− log σ

}

• Exponential family with:

η = [µ/σ2 ; −1/2σ2]

T (x) = [x ; x2]

A(η) = log σ + µ/2σ2

h(x) = 1/
√

2π

• Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.

Multivariate Gaussian Distribution

• For a continuous vector random variable:

p(x|µ,Σ) = |2πΣ|−1/2 exp

{

−1

2
(x − µ)>Σ−1(x− µ)

}

• Exponential family with:

η = [Σ−1µ ; −1/2Σ−1]

T (x) = [x ; xx>]

A(η) = log |Σ|/2 + µ>Σ−1µ/2

h(x) = (2π)−n/2

• Sufficient statistics: mean vector and correlation matrix.

• Other densities: Student-t, Laplacian.

• For non-negative values use exponential, Gamma, log-normal.

Important Gaussian Facts

• All marginals of a Gaussian are again Gaussian.
Any conditional of a Gaussian is again Gaussian.

Σ

p(x,y)

p(x)

p(y|x=x0)

x0

Gaussian Marginals/Conditionals

• To find these parameters is mostly linear algebra:
Let z = [x>y>]> be normally distributed according to:

z =

[

x

y

]

∼ N
([

a

b

]

;

[

A C

C> B

])

where C is the (non-symmetric) cross-covariance matrix between x

and y which has as many rows as the size of x and as many
columns as the size of y.
The marginal distributions are:

x ∼ N (a;A)

y ∼ N (b;B)

and the conditional distributions are:

x|y ∼ N (a + CB−1(y − b);A − CB−1C>)

y|x ∼ N (b + C>A−1(x − a);B −C>A−1C)



Moments

• For continuous variables, moment calculations are important.

• We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(η).

• The qth derivative gives the qth centred moment.

dA(η)

dη
= mean

d2A(η)

dη2
= variance

· · ·
• When the sufficient statistic is a vector, partial derivatives need to

be considered.

Parameterizing Conditionals

• When the variable(s) being conditioned on (parents) are discrete,
we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table
of tables for discrete models.

• When the conditioned variable is continuous, its value sets some of
the parameters for the other variables.

• A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(θ>x; Σ).

• For discrete children and continuous parents, we often use a
Bernoulli/multinomial whose paramters are some function f (θ>x).

Generalized Linear Models (GLMs)

• Generalized Linear Models: p(y|x) is exponential family with
conditional mean µ = f (θ>x).

• The function f is called the response function.

• If we chose f to be the inverse of the mapping b/w conditional
mean and natural parameters then it is called the canonical

response function.

η = ψ(µ)

f (·) = ψ−1(·)

Potential Functions

• We can be even more general and define distributions by arbitrary
energy functions proportional to the log probability.

p(x) ∝ exp{−
∑

k

Hk(x)}

• A common choice is to use pairwise terms in the energy:

H(x) =
∑

i

aixi +
∑

pairs ij

wijxixj



Special variables

• If certain variables are always observed we may not want to model
their density. For example inputs in regression or classification.
This leads to conditional density estimation.

• If certain variables are always unobserved, they are called hidden or
latent variables. They can always be marginalized out, but can
make the density modeling of the observed variables easier.
(We’ll see more on this later.)

Multiple Observations, Complete Data, IID Sampling

• A single observation of the data X is rarely useful on its own.

• Generally we have data including many observations, which creates
a set of random variables: D = {x1,x2, . . . ,xM}

• Two very common assumptions:

1. Observations are independently and identically distributed
according to joint distribution of graphical model: IID samples.

2. We observe all random variables in the domain on each
observation: complete data.

Likelihood Function

• So far we have focused on the (log) probability function p(x|θ)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters θ.

• But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

• Think of p(x|θ) as a function of θ for fixed x:

L(θ;x) = p(x|θ)
`(θ;x) = log p(x|θ)

This function is called the (log) “likelihood”.

• Chose θ to maximize some cost function c(θ) which includes `(θ):

c(θ) = `(θ;D) maximum likelihood (ML)

c(θ) = `(θ;D) + r(θ) maximum a posteriori (MAP)/penalizedML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

Maximum Likelihood

• For IID data:

p(D|θ) =
∏

m

p(xm|θ)

`(θ;D) =
∑

m

log p(xm|θ)

• Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

θ∗ML = argmaxθ `(θ;D)

• Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.



Example: Bernoulli Trials

• We observe M iid coin flips: D=H,H,T,H,. . .

• Model: p(H) = θ p(T ) = (1 − θ)

• Likelihood:

`(θ;D) = log p(D|θ)
= log

∏

m

θx
m

(1 − θ)1−xm

= log θ
∑

m

xm + log(1 − θ)
∑

m

(1 − xm)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂`

∂θ
=
NH

θ
− NT

1 − θ

⇒ θ∗ML =
NH

NH +NT

Example: Multinomial

• We observe M iid die rolls (K-sided): D=3,1,K,2,. . .

• Model: p(k) = θk
∑

k θk = 1

• Likelihood (for binary indicators [xm = k]):

`(θ;D) = log p(D|θ)
= log

∏

m

θxm = log
∏

m

θ
[xm=1]
1 . . . θ

[xm=k]
k

=
∑

k

log θk
∑

m

[xm = k] =
∑

k

Nk log θk

• Take derivatives and set to zero (enforcing
∑

k θk = 1):

∂`

∂θk
=
Nk
θk

−M

⇒ θ∗k =
Nk
M

Example: Univariate Normal

• We observe M iid real samples: D=1.18,-.25,.78,. . .

• Model: p(x) = (2πσ2)−1/2 exp{−(x− µ)2/2σ2}
• Likelihood (using probability density):

`(θ;D) = log p(D|θ)

= −M
2

log(2πσ2) − 1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂`
∂µ = (1/σ2)

∑

m(xm − µ)

∂`
∂σ2 = −M

2σ2 + 1
2σ4

∑

m(xm − µ)2

⇒ µML = (1/M )
∑

m xm

σ2
ML = (1/M )

∑

m x
2
m − µ2

ML

Example: Univariate Normal

A

B

x



Example: Linear Regression

• In linear regression, some inputs (covariates,parents) and all
outputs (responses,children) are continuous valued variables.

• For each child and setting of discrete parents we use the model:

p(y|x, θ) = gauss(y|θ>x, σ2)

• The likelihood is the familiar “squared error” cost:

`(θ;D) = − 1

2σ2

∑

m

(ym − θ>xm)2

• The ML parameters can be solved for using linear least-squares:

∂`

∂θ
= −

∑

m

(ym − θ>xm)xm

⇒ θ∗ML = (X>X)−1X>Y

Example: Linear Regression
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Sufficient Statistics

• A statistic is a function of a random variable.

• T (X) is a “sufficient statistic” for X if

T (x1) = T (x2) ⇒ L(θ;x1) = L(θ;x2) ∀θ
• Equivalently (by the Neyman factorization theorem) we can write:

p(x|θ) = h (x, T (x)) g (T (x), θ)

• Example: exponential family models:

p(x|θ) = h(x) exp{η>T (x) − A(η)}

Sufficient Statistics are Sums

• In the examples above, the sufficient statistics were merely sums
(counts) of the data:
Bernoulli: # of heads, tails
Multinomial: # of each type
Gaussian: mean, mean-square
Regression: correlations

• As we will see, this is true for all exponential family models:
sufficient statistics are average natural parameters.

• Only exponential family models have simple sufficient statistics.



MLE for Exponential Family Models

• Recall the probability function for exponential models:

p(x|θ) = h(x) exp{η>T (x) − A(η)}
• For iid data, sufficient statistic is

∑

m T (xm):

`(η;D) = log p(D|η) =

(

∑

m

log h(xm)

)

−MA(η)+

(

η>
∑

m

T (xm)

)

• Take derivatives and set to zero:
∂`
∂η =

∑

m T (xm) −M
∂A(η)
∂η

⇒ ∂A(η)
∂η = 1

M

∑

m T (xm)

ηML = 1
M

∑

m T (xm)

recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.

Basic Statistical Problems

• Let’s remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

• Density estimation is hardest. If we can do joint density estimation
then we can always condition to get what we want:
Regression: p(y|x) = p(y,x)/p(x)
Classification: p(c|x) = p(c,x)/p(x)
Clustering: p(c|x) = p(c,x)/p(x) c unobserved

Fundamental Operations with Distributions

• Generate data: draw samples from the distribution. This often
involves generating a uniformly distributed variable in the range
[0,1] and transforming it. For more complex distributions it may
involve an iterative procedure that takes a long time to produce a
single sample (e.g. Gibbs sampling, MCMC).

• Compute log probabilities.

When all variables are either observed or marginalized the result is a
single number which is the log prob of the configuration.

• Inference: Compute expectations of some variables given others
which are observed or marginalized.

• Learning.

Set the parameters of the density functions given some (partially)
observed data to maximize likelihood or penalized likelihood.

Learning

• In AI the bottleneck is often knowledge acquisition.

• Human experts are rare, expensive, unreliable, slow.

• But we have lots of data.

• Want to build systems automatically based on data and a small
amount of prior information (from experts).



Known Models

• Many systems we build will be essentially probability models.

• Assume the prior information we have specifies type & structure of
the model, as well as the form of the (conditional) distributions or
potentials.

• In this case learning ≡ setting parameters.

• Also possible to do “structure learning” to learn model.

Jensen’s Inequality

• For any concave function f () and any distribution on x,

E[f (x)] ≤ f (E[x])

f(E[x])

E[f(x)]

• e.g. log() and
√

are concave

• This allows us to bound expressions like log p(x) = log
∑

z p(x, z)


