CSC2515 — Assignment #2

Due: Nov.7, 2006, 2pm at the START of class
Worth: 18%
Late assignments not accepted.

1 Pseudo-Bayesian Linear Regression (2%)
In this question you will dabble in Bayesian statistics and extend the probabilistic model formulation to include not
only the data but also the weights.

Consider the following conditional model of a scalar output y given some inputs x:

p(ylx) = / p(ylx, w)p(w)dw

p(ylx,w) = N(y; w'x,b)
p(w) = N(w;0,al)

Here the weight prior p(w) is a Gaussian with mean zero and covariance oI (I is the identity matrix) and the data
model is a conditional linear-Gaussian with mean w'™x and variance b.

Notice that the model generates a value of y given x by stochastically selecting a set of weights and using these
to linearly combine the components of x. Given this generative model, the correct way to make predictions on
future data given a finite training set is to average over all possible settings of the weights, letting each one make a
prediction, and weight the predictions in the average by the posterior of the weights given the training data.

e Find the posterior distribution over weights p(w|{x,,yn},a,b) given a finite training set {x,,y,} and the
variances a,b. Hint: your answer should be another Gaussian distribution, now over w. To do this, you can
either form the joint Gaussian p(y, w|x), marginalize out the weights to form p(y|x) and then use Bayes rule
to find p(w|x,y) or you can try completing the square, using vector and matrix operations and the apply the
conditioning formulas from the probability and statistics review notes.
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e Show that the ridge regression weights, which minimize the cost Aw™w + > (y, — W'x,)? are equal to the

mean (and mode) of the posterior above.
e Give the ridge regression penalty A in terms of the variances a, b above.

e Integrate out the posterior over the weights, and work out the conditional predictive distribution over a new
output Ynew given a new test input x™* and the training set:

P(Ynew X" {xn, yn}, a,b) = / p(y" " x" ", w)p(w{xn, yn}, a, b)dw

w

1t is permissible to consult external sources (textbooks, research reports on the web, notes from Bayesian stals courses,
etc) when working out the answer to this question but it is not permissible to copy an answer directly from another
source without understanding it and working it out for yourself.



2 Reminder: Training a Neural Network

In the experiments section you will train a one-hidden-layer neural network to perform simple scalar output regression.
As a reminder, the neural network is a generalized linear model of the form
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where o(-) is the sigmoid or tanh function and we always include a special “bias” input unit o = 1 and a “bias”
hidden unit hg = 1. Assuming that we are trying to minimize squared error (maximize likelihood under a Gaussian
noise model), our objective is:
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Of course, since there are local minima we must be very carefuly about how we initialize the weights; one very simple
trick is to restart several times from different (small) random weights.

3 Locally Weighted Regression

A very useful and common regression model is to just do “local smoothing” on the training set by placing a basis
function on every training input point, and setting the weights so that they interpolate the training outputs:
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This model is highly “non-parametric”: it has only a single parameter o > 0 sometimes called the “bandwidth”.
We'd like to set the bandwidth by optimizing an objective function numerically. We can’t use just simple training
error, since this would drive « to infinity. Instead, let’s minimize the leave-one-out estimate of squared error:
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where §(x™) is computed by leaving out the point x™ when making predictions, ie
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3.1 Derivation [1%)]

e Find the derivative d¢” /dlog o with respect to log a, given the training set and the current value of a.



4 Experiments

This part of the assignment is set with some basic experiments (worth 9%), which you should do all of, two advanced
experiments (worth an additional 3% each) and a bonus (worth up to 3% extra). Note: Do not hand in any of your
code. Really, we're not kidding, we won’t look at it and it will annoy us that you ignored this instruction.

4.1 Datasets

On the course website you will find three datasets, a2antigen, a2motorcycle and a2weather, which are regression
problems each having a single scalar output. The antigen data has input dimension 8, 80 training cases, 17 test cases
and represents the prostate specific antigen level in a medical prediction task as a function of various risk factors.
The motorcycle data set has input dimension 1, 103 training points, 30 test points and represents the acceleration
force (in g’s) on a motorcycle helmet as a function of time (in ms) during a collision. The weather data set has data
input dimension 2, 188 training points, and 50 test points and represents the annual precipitation (in mm) in the
state of Washington, USA, as a function of grid location on a map.

4.2 Basic Experiments [9%]

Write programs to perform both locally weighted regression and to train multilayer neural networks (with sig-
moid/tanh units) on the three prediction tasks. For locally weighted regression use gradient minimization on ¢%
to set . For the neural networks, use gradient minimization on the penalized objective ¢~ to set the weights and
biases. For each of the three datasets do the following:

1. Fit locally weighted regression. Set a by optimizing the leave-one-out error. On the datasets in this assignment,
if you carefully follow the gradient of leave-one-out error with respect to a (or better log a), starting from a
relatively small value (on the order of the spacing between the training points) you should not need to do any
random restarts. If you have some spare cycles on your hands you can check that your search is working by
exhaustively evaluating « on a fine grid.

2. Fit a multilayer neural network with one hidden layer having 64 hidden units (with sigmoid/tanh nonlinearities
at the hidden layer but no nonlinearity at the output). Use both A = 0 (no weight decay) and A = .001 (weight
decay).

What to hand in:

1. Error/Objective Values: For all three datasets, report the average training error (for the neural nets) or average
leave-one-out error (for locally weighted regression ) and the average test error for all three methods. Make
sure you do not include the weight decay term when computing average test/train errors (but of course you
should include it when you compute the gradient to adjust the weights). For the neural nets, report test results
for the parameters that achieved the lowest value of the penalized objective function at training time (for most
optimization methods this will be the parameters at the final iteration). For locally weighted regression report
test results for the o which minimzed the leave-one-out error. Indicate the value of the objective function that
you attained at training time and the « your method chose for locally weighted regression.

2. Motorcycle Data Plots: For each regression model, produce a plot showing the training points as squares, the
test points as circles and the interpolant §(x) as a curve.

3. Weather Data Plots: For each regression model, plot the training points in the input plane using squares, the
test points using circles and the interpolant using contour lines overlaid on the data.

4. Antigen Data Plots: Hand in a single plot, clearly labelled, showing four lines, representing the average training
and testing errors of the neural network (using A = 0 and A = .001) as training proceeds (i.e. plot training
iterations horizontally and error vertically). Mark on your plot (as a vertical line) the iteration at which the
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minimum of training objective occurs, and indicate what the test error is at that point. Also mark on your
plot (as another vertical line) the iteration at which the minimum of test error occurs and indicate what that
minimum test error is. Finally, show (as horizontal lines) the value of training, leave-one-out and testing error
achieved by locally weighted regression at the o chosen by minimizing leave-one-out error. This plot may look
better if either (or both) iterations/error are shown on a logarithmic scale.

Advanced Experiments [6%)]

. In the locally weighted regression model, use a different bandwidth a4 for each input dimension. Pick one

dataset, and retrain your model and replot the training and testing errors, as well as reporting the optimal
values of «y for all dimensions d.

In the neural network model (with A = .001), try all numbers of hidden units units in the set k = [1, 2,4, 8,16, 32, ...

(where M is > the number of training samples). For each number of units k, compute the best training error
you can achieve after multiple restarts and the test error of the corresponding network. Do this for one dataset
of your choice. Hand in a plot of each error measure as a function of the (log base 2 of) number of hidden units
k. What k gives the best test error?

Bonus Experiment [up to 3%]

. Pick one of the datasets. For that dataset, set both the number of hidden units k and the value of the weight

decay parameter A simultaneously by using leave-one-out cross-validation when training your neural network.
Chose sensible ranges for k and A to search over, and display your results graphically, as well as reporting the
best pair of (k,\) for test and validation. Successfully completing this bonus question requires being smart
about how you train and re-train your networks, so tell us a bit about how you did that.

IMPORTANT: please do your computing on CDF or your own machine and not on CSLAB machines
since they have limited software licenses and other resources.
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