
CSC2515 – Assignment #1

Due: Oct17 2006, 2pm at the START of class
Worth: 18%

Late assignments not accepted.

1 Generalization and Model Complexity (3%)

This question asks you to show your general understanding of underfitting and overfitting as they relate to model
complexity and training set size.

• Consider a one-dimensional classification problem in which p(y = 0) = p(y = 1) = 1/2 and p(x|y = k) is
uniformly distributed between `k and uk. Assume `0 < `1 < u0 < u1.

– What is the Bayes-optimal classification rule?

– What error rate does it achieve (ie what is the Bayes error)?

– What is the probability that for a training set of size N drawn from this model, the Bayes classifier has
training error zero?

– [Harder.] Answer the same questions if p(x|y = k) is a Gaussian with mean µk and variance σ2
k.

(You’ll need to express your answer in terms of the erf function.)

• Consider a continuous domain and a smooth joint distribution over inputs and outputs, so that no test or
training case is ever duplicated exactly.

– For a fixed training set size, sketch a graph of the typical behaviour of training error rate versus model
complexity in a learning system. Add to this graph a curve showing the typical behaviour of the corre-
sponding test error rate (for an infinite test set drawn independently from the same joint distribution as
the training set) versus model complexity, on the same axes. Mark a vertical line showing where you think
the most complex model your data supports is; chose your horizontal range so that this line is neither on
the extreme left nor on the extreme right. Mark a horizontal line showing the Bayes error. Indicate on
your vertical axes where zero error is and draw your graphs with increasing error upwards and increasing
complexity rightwards.

– For a fixed model complexity, sketch a graph of the typical behaviour of training error rate versus training
set size in a learning system. Add to this graph a curve showing the typical behaviour of test error rate
(again on an iid infinite test set) versus training set size, on the same axes. Mark a horizontal line showing
the Bayes error. Indicate on your vertical axes where zero error is and draw your graphs with increasing
error upwards and increasing training set size rightwards.

– For a fixed range of model complexity (from very simple to very complex), sketch a graph of training set
size versus the model complexity which achieves the best test performance (on an iid infinite test set).
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2 Naive-Bayes for Continuous Inputs (3%)

In this question, you’ll derive for yourself the maximum likelihood estimates for the Naive-Bayes classification model
when the inputs are continuous values modeled by Gaussian distributions.

Recall that Naive-Bayes makes the assumption that the features are conditionally independent given the class.
Hence, for a discrete class label y ∈ (1, 2, . . . ,K) and a real valued vector of D features x = (x1, x2, . . . , xD) we have
the following model:

p(y = k) = αk

p(x|y = k) =
D∏

i=1

[
(2πσ2

ki)
−1/2 exp

{
− 1

2σ2
ki

(xi − µki)2
}]

where αk is the prior on class k, and µki,σ2
ki are the means,variances of feature i given that the data is in class k.

• Write down the expression for the likelihood function `(θ;D) = log p(y1,x1, y2,x2, . . . , yN ,xN |θ) of a particular
dataset D = {y1,x1, y2,x2, . . . , yN ,xN} with parameters θ = {α, µ, σ2}. (Assume the data are iid.)

• Take partial derivatives of the likelihood with respect to each of the parameters µki and σ2
ki. Since the variances

are positive quantities, things will be easier for you if you take the derivative with respect to their logarithms.

• Set these partial derivatives to zero and solve for the maximum likelihood parameter values µki, σ2
ki.

• Also take partial derivatives with respect to the class priors αk and find their optimal values. [Remember that
αk must be between 0 and 1 and sum to unity (across k), so you’ll need to use Lagrange multipliers to enforce
this constraint. Don’t waste too much time on this question, but if you can’t do it, you probably need to brush
up on your calculus.]

• The contours of equal (log) posterior probability (and hence the decision surface) for this classifier are not (in
general) linear in the input features. What additional constraint would you have to add to the parameters
in order to make it linear? After this constraint has been added, how is the model different from Fisher’s
Discriminant (in the two-class case)?
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3 Spam Email Classification (12%)

For this question you will build three classifiers to label emails (from Prof. Roweis’ archives) as either spam or
non-spam (“ham”). DO NOT HAND IN ANY CODE.

Thanks to your hard working TAs, the emails have already been converted into a convenient representation in which
each email is a vector of 185 binary features. Most of these features indicate whether or not particular words occurred
in the email or not; a few of them indicate things like capitalization, presence of attachments, etc. The complete list
of features and what they represent can be found in the file a1features.txt. The label y takes on two values, one
corresponding to ham and the other to spam. There are 1000 training cases and 4000 test cases; they can be found
on the course website in the file a1spam.mat (Matlab V7), a1spamv6.mat (Matlab V6) or a1spam.zip (zipped ascii).

• To get started, load the data into your favourite computing environment and determine by eye which class
label corresponds to spam and which one corresponds to ham. (This should be quite easy if you take a look at
specific features from the wordlist, such as “viagra”.) Write the answer somewhere on what you hand in.

3.1 K-NN Classifier

• Build a simple K nearest neighbour classifier using dumb Euclidean (Hamming) distance on the binary features.
To classify a test point (or a point being held out), label the point according the the majority class of its K
nearest neighbours. If this matches the true label, the classifier is correct. If not, the classifier has made an
error. If there is a tie, chose the class which was most common in the training data.

• Since the inputs are binary, distances are quantized and so when you find the K nearest neighbours there might
actually be several neighbours at exactly the same distance as the Kth neighbour. In such cases, you can just
select between these equidistant neighbours randomly.

• Try all odd values of K from 1 to 29. Hand in a plot showing the leave one out error (as measured by leave-
one-out cross validation performance) and the test error as a function of K. (Don’t worry if this plot looks a
bit noisy.) Since there is no obvious “training error” for KNN we are using leave-one-out as a surrogate.

• Report the optimal value of both leave-one-out and testing error and the K at which each of these occur.

3.2 Discrete Feature Naive Bayes Classifier

• For smoothing (regularization) purposes, add two extra training cases to each class, one which has every feature
off and one which has every feature on. (Notice: this means you are adding 4 extra cases in total.)

• Using this extended training set, train a discrete Naive Bayes classifier on the features x. In particular, fit the
model below to maximize the average of log p(x, y) on the training set (including the extra smoothing examples,
which will cause you to add one to all your counts).

p(y = k) = αk

p(xi = 1|y = k) = ηki

p(x|y = k, η) =
∏

i

(ηki)xi(1− ηki)(1−xi)

• You should get parameters ηki ≡ p(xi = 1|y = k) for k ∈ {0, 1} and i ∈ {1, . . . , 185} and parameters αk for
k ∈ {0, 1}.

• Sort the features by the value of log(η0i/η1i) and produce two lists of the 5 features with the largest (most
positive) and the 5 features with the smallest (most negative) log ratios.

• Using the parameters you fit on the training set (without leaving anything out) compute log p(y|x) for each of
the training and test cases. Select the most likely posterior class for each training and test case; if this class
matches the label, the classifier is correct. If not, the classifier has made an error.
Report the average training and average test error rates.
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• Add these error rates as well labelled horizontal lines to the KNN error rate plot.

• What is the average conditional log likelihood log p(y|x) achieved on the spam training/testing data?
On the ham training/testing data?

3.3 Logistic Regression Classifier

• Using maximum conditional likelihood, fit a logistic regression classifier to the features, after augmenting the
vector x with a constant (bias) term equal to +1. The logistic regression model is:

p(y = k|x, θ) =
eθ>k x∑
j eθ>j x

Fit the model above to maximize the average of log p(y|x) on the training set, minus 0.001 times the sum of
the absolute values of the weights (

∑
k,i |θki|).

• You should get parameters θki for for k ∈ {0, 1} and i ∈ {0, . . . , 185} (i=0 is the constant or bias term).

• Sort the features by the value of (θ0i − θ1i) and produce two lists of the 5 features with the largest (most
positive) and the 5 features with the smallest (most negative) differences.

• Using the parameters you fit on the training set (without leaving anything out) compute log p(y|x) for each of
the training and test cases. Select the most likely posterior class for each training and test case; if this class
matches the label, the classifier is correct. If not, the classifier has made an error.
Report the average training and average test error rates.

• Add these error rates as well labelled horizontal lines to the KNN error rate plot.

• What is the average conditional log likelihood log p(y|x) achieved on the spam training/testing data?
On the ham training/testing data?

• Remember that you cannot find the model parameters explicitly in closed form; instead you need to numerically
compute the gradient of the average conditional log likelihood with respect to θ and use that gradient to
numerically maximize the objective. The gradient for the average conditional log likelihood is derived in the
class notes, so you only need to numerically compute the gradient for the regularization term (absolute value
of the weights). As a hint, that gradient can take on only two values and depends only on the sign of each
weight.

• You are free to do the maximization in any way you choose. On the website we’ve posted some code which
does conjugate gradient minimization. Or you can download any other optimizer you want, but you can’t blame
the optimizer if your classifier doesn’t train properly. For this small scale assignment, the following adaptive
gradient procedure, starting with random parameters, should work pretty nicely and is very easy to code up,
so use it if you are in doubt:

1. Measure the current objective and gradient.

2. Adjust the parameters by adding ∆ times the gradient.

3. Measure the new objective and new gradient.

4. If the new objective is better, set ∆ = 1.1∆
else if the new objective is worse, go back to the old parameters, objective and gradient, set ∆ = .5∆.

5. If ∆ > ∆min, go to (2).

• Do not include the absolute value of the constant or bias term in the regularization penalty or its gradient.

• Don’t forget to use the average log conditional likelihood and to subtract the regularization term from this and
to maximize the objective. Make sure your gradient is correct before using any optimization package. We’ll
be very annoyed if you ask us questions about why things aren’t working and it turns out you are minimizing
instead of maximizing or you are adding the regularizer instead of subtracting it.
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