SC2515 – Machine Learning	Sam Roweis	Partially Unobserved Variables
SC2010 - Machine Learning	Jain NOWEIS	• Certain variables q in our models may be <i>unobserved</i> , either at training time or at test time or both.
Lecture 8:		 If the are occasionally unobserved they are missing data. e.g. undefinied inputs, missing class labels, erroneous target values In this case, we define a new cost function in which we integrate out the missing values at training or test time: ℓ(θ: D) = ∑ log p(x^c y^c θ) + ∑ log p(x^m θ)
Unsupervised Learning & EM AL	GORITHM	$\ell(\theta; \mathcal{D}) = \sum_{\text{complete}} \log p(\mathbf{x}^{c}, \mathbf{y}^{c} \theta) + \sum_{\text{missing}} \log p(\mathbf{x}^{m} \theta)$ $= \sum_{\text{complete}} \log p(\mathbf{x}^{c}, \mathbf{y}^{c} \theta) + \sum_{\text{missing}} \log \sum_{\mathbf{y}} p(\mathbf{x}^{m}, \mathbf{y} \theta)$
November 1, 2005		• Variables which are <i>always</i> unobserved are called <i>latent variables</i> of sometimes <i>hidden variables</i> .
RECALL: MISSING OUTPUTS		LATENT VARIABLES
Remember that you can think of unsupervised leasupervised learning in which all the outputs are not clustering == classification with missing label - Dimensionality reduction == regression with not cluster in the second	arning as <i>nissing</i> : s. nissing targets.	 What should we do when a variable z is <i>always</i> unobserved? Depends on where it appears in our model. If we never condition of it when computing the probability of the variables we <i>do</i> observe, then we can just forget about it and integrate it out. e.g. given y, x fit the model p(z, y x) = p(z y)p(y x, w)p(w).
Remember that you can think of unsupervised lease supervised learning in which all the outputs are $r_{\rm c}$ - Clustering == classification with missing label	arning as <i>missing</i> : ls. missing targets. ncompasses the	 What should we do when a variable z is <i>always</i> unobserved? Depends on where it appears in our model. If we never condition of it when computing the probability of the variables we <i>do</i> observe, then we can just forget about it and integrate it out. e.g. given y, x fit the model p(z, y x) = p(z y)p(y x, w)p(w). But if z is conditioned on, we need to model it: e.g. given y, x fit the model p(y x) = ∑_z p(y x, z)p(z)
Remember that you can think of unsupervised lease supervised learning in which all the outputs are not - Clustering == classification with missing label - Dimensionality reduction == regression with not Density estimation is actually very general and en- two problems above and a whole lot more.	arning as <i>missing</i> : ls. missing targets. ncompasses the	 What should we do when a variable z is <i>always</i> unobserved? Depends on where it appears in our model. If we never condition of it when computing the probability of the variables we <i>do</i> observe, then we can just forget about it and integrate it out. e.g. given y, x fit the model p(z, y x) = p(z y)p(y x, w)p(w). But if z is conditioned on, we need to model it:

MIXTURE MODELS

- 4
- Mixture models are the most basic possible latent variable model, having only a single discrete latent variable z.
- Idea: allow different submodels (experts) to contribute to the (conditional) density model in different parts of the space.
- Divide and conquer: use simple parts to build complex models. (e.g. multimodal densities, or piecewise-linear regressions).

MIXTURE DENSITIES

- 5
- Exactly like a class-conditional model but the class is unobserved and so we sum it out. What we get is a perfectly valid density:

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} p(z = k|\theta_z) p(\mathbf{x}|z = k, \theta_k)$$
$$= \sum_{k=1}^{K} \alpha_k p_k(\mathbf{x}|\theta_k)$$

where the "mixing proportions" add to one: $\sum_k \alpha_k = 1$.

• We can use Bayes' rule to compute the posterior probability of the mixture component given some data:

$$r_k(\mathbf{x}) = p(z = k | \mathbf{x}, \theta) = \frac{\alpha_k p_k(\mathbf{x} | \theta_k)}{\sum_j \alpha_j p_j(\mathbf{x} | \theta_j)}$$

these quantities are called *responsibilities*. You've seen them many times before; now you know their names!

WHY IS LEARNING HARDER WITH HIDDEN VARIABLES? 6

• In fully observed settings, the probability model is a product, thus the log likelihood is a sum where terms decouple.

$$\ell(\theta; \mathcal{D}) = \sum_{n} \log p(\mathbf{y}_{n}, \mathbf{x}_{n} | \theta)$$
$$= \sum_{n} \log p(\mathbf{x}_{n} | \theta_{x}) + \sum_{n} \log p(\mathbf{y}_{n} | \mathbf{x}_{n}, \theta_{y})$$

• With latent variables, the probability already contains a sum, so the log likelihood has all parameters coupled together:

$$\ell(\theta; \mathcal{D}) = \sum_{n} \log \sum_{\mathbf{z}} p(\mathbf{x}_{n}, \mathbf{z} | \theta)$$
$$= \sum_{n} \log \sum_{\mathbf{z}} p(\mathbf{z} | \theta_{z}) p(\mathbf{x}_{n} | \mathbf{z}, \theta_{x})$$

LEARNING WITH LATENT VARIABLES

7

- Likelihood $\ell(\theta) = \log \sum_{\mathbf{z}} p(\mathbf{z}|\theta_z) p(\mathbf{x}|\mathbf{z}, \theta_x)$ couples parameters:
- We can treat this as a black box probability function and just try to optimize the likelihood as a function of θ.
 We did this many times before by taking gradients.
- However, sometimes taking advantage of the latent variable structure can make parameter estimation easier.
- Good news: today we will see the *EM algorithm* which allows us to treat learning with latent variables using fully observed tools.
- Basic trick: guess the values you don't know. Basic math: use convexity to lower bound the likelihood.

LEARNING WITH MIXTURES

8

9

• We can learn mixture densities using gradient descent on the likelihood as usual. The gradients are quite interesting:

$$\ell(\theta) = \log p(\mathbf{x}|\theta) = \log \sum_{k} \alpha_{k} p_{k}(\mathbf{x}|\theta_{k})$$
$$\frac{\partial \ell}{\partial \theta} = \frac{1}{p(\mathbf{x}|\theta)} \sum_{k} \alpha_{k} \frac{\partial p_{k}(\mathbf{x}|\theta_{k})}{\partial \theta}$$
$$= \sum_{k} \alpha_{k} \frac{1}{p(\mathbf{x}|\theta)} p_{k}(\mathbf{x}|\theta_{k}) \frac{\partial \log p_{k}(\mathbf{x}|\theta_{k})}{\partial \theta}$$
$$= \sum_{k} \alpha_{k} \frac{p_{k}(\mathbf{x}|\theta_{k})}{p(\mathbf{x}|\theta)} \frac{\partial \ell_{k}}{\partial \theta_{k}} = \sum_{k} \alpha_{k} r_{k} \frac{\partial \ell_{k}}{\partial \theta_{k}}$$

• In other words, the gradient is the *responsibility weighted sum* of the individual log likelihood gradients. (cf. MOEs)

CLUSTERING EXAMPLE: GAUSSIAN MIXTURE MODELS 10

• Consider a mixture of K Gaussian components:

$$p(\mathbf{x}|\theta) = \sum_{k} \alpha_{k} \mathcal{N}(\mathbf{x}|\mu_{k}, \Sigma_{k})$$

$$p(z = k|\mathbf{x}, \theta) = \frac{\alpha_{k} \mathcal{N}(\mathbf{x}|\mu_{k}, \Sigma_{k})}{\sum_{j} \alpha_{j} \mathcal{N}(\mathbf{x}|\mu_{k}, \Sigma_{k})}$$

$$\ell(\theta; \mathcal{D}) = \sum_{n} \log \sum_{k} \alpha_{k} \mathcal{N}(\mathbf{x}^{n}|\mu_{k}, \Sigma_{k})$$

• Density model: $p(x|\theta)$ is a familiarity signal. Clustering: $p(z|\mathbf{x}, \theta)$ is the assignment rule, $-\ell(\theta)$ is the cost.

Conditional Mixtures: MOEs Revisited

• Mixtures of Experts are also called conditional mixtures. Exactly like a class-conditional classification model, except the class is unobserved and so we sum it out:

$$\begin{split} p(\mathbf{y}|\mathbf{x}, \theta) &= \sum_{k=1}^{K} p(z = k | \mathbf{x}, \theta_z) p(\mathbf{y}| z = k, \mathbf{x}, \theta_k) \\ &= \sum_{k} \alpha_k(\mathbf{x}|\theta_z) p_k(\mathbf{y}|\mathbf{x}, \theta_k) \end{split}$$

where $\sum_k \alpha_k(\mathbf{x}) = 1 \quad \forall \mathbf{x}.$

- Harder: must learn $\alpha_k(\mathbf{x})$ (unless chose z independent of \mathbf{x}). The $\alpha_k(\mathbf{x})$ are exactly what we called the *gating function*.
- We can still use Bayes' rule to compute the posterior probability of the mixture component given some data:

$$p(z = k | \mathbf{x}, \mathbf{y}, \theta) = \frac{\alpha_k(\mathbf{x}) p_k(\mathbf{y} | \mathbf{x}, \theta_k)}{\sum_j \alpha_j(\mathbf{x}) p_j(\mathbf{y} | \mathbf{x}, \theta_j)}$$

MIXURE OF GAUSSIANS LEARNING

• We can learn mixtures of Gaussians using gradient descent. For example, the gradients of the means:

$$\ell(\theta) = \log p(\mathbf{x}|\theta) = \log \sum_{k} \alpha_{k} p_{k}(\mathbf{x}|\theta_{k})$$
$$\frac{\partial \ell}{\partial \theta} = \sum_{k} \alpha_{k} r_{k} \frac{\partial \ell_{k}}{\partial \theta_{k}} = \sum_{k} \alpha_{k} r_{k} \frac{\partial \log p_{k}(\mathbf{x}|\theta_{k})}{\partial \theta}$$
$$\frac{\partial \ell}{\partial \mu_{k}} = -\sum_{k} \alpha_{k} r_{k} \Sigma_{k}^{-1}(\mathbf{x} - \mu_{k})$$

- Gradients of covariance matrices are harder: require derivatives of log determinants and quadratic forms.
- Must ensure that mixing proportions α_k are positive and sum to unity and that covariance matrices are positive definite.

PARAMETER CONSTRAINTS

- If we want to use general optimizations (e.g. conjugate gradient) to learn latent variable models, we often have to make sure parameters respect certain constraints. (e.g. $\sum_k \alpha_k = 1$, Σ_k pos.definite).
- A good trick is to reparameterize these quantities in terms of unconstrained values. For mixing proportions, use the softmax:

$$\alpha_k = \frac{\exp(q_k)}{\sum_j \exp(q_j)}$$

• For covariance matrices, use the Cholesky decomposition:

$$\Sigma^{-1} = A^{\top} A$$
$$|\Sigma|^{-1/2} = \prod_{i} A_{ii}$$

where A is upper diagonal with positive diagonal:

$$A_{ii} = \exp(r_i) > 0$$
 $A_{ij} = a_{ij}$ $(j > i)$ $A_{ij} = 0$ $(j < i)$

RECAP: LEARNING WITH LATENT VARIABLES 13

• With latent variables, the probability contains a sum, so the log likelihood has all parameters coupled together:

$$(\theta; \mathcal{D}) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} | \theta) = \log \sum_{\mathbf{z}} p(\mathbf{z} | \theta_z) p(\mathbf{x} | \mathbf{z}, \theta_x)$$

- (we can also consider continuous z and replace \sum with \int)
- If the latent variables were observed, parameters would decouple again and learning would be easy:

$$\ell(\theta; \mathcal{D}) = \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{z}|\theta_z) + \log p(\mathbf{x}|\mathbf{z}, \theta_x)$$

- One idea: ignore this fact, compute $\partial \ell / \partial \theta$, and do learning with a smart optimizer like conjugate gradient.
- Another idea: what if we use our current parameters to *guess* the values of the latent variables, and then do fully-observed learning? This back-and-forth trick might make optimization easier.

EXPECTATION-MAXIMIZATION (EM) ALGORITHM 14

- Iterative algorithm with two linked steps: **E-step**: fill in values of $\hat{\mathbf{z}}^t$ using $p(\mathbf{z}|\mathbf{x}, \theta^t)$. **M-step**: update parameters using $\theta^{t+1} \leftarrow \operatorname{argmax} \ell(\theta; \mathbf{x}, \hat{\mathbf{z}}^t)$.
- E-step involves inference, which we need to do at runtime anyway. M-step is no harder than in fully observed case.
- We will prove that this procedure monotonically improves ℓ (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood (as any optimizer should).
- Note: EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- EM is *not* a cost function such as "maximum-likelihood". EM is *not* a model such as "mixture-of-Gaussians".

Complete & Incomplete Log Likelihoods

15

 \bullet Observed variables $\mathbf{x},$ latent variables $\mathbf{z},$ parameters $\boldsymbol{\theta}:$

$$c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta)$$

is the complete log likelihood.

- Usually optimizing $\ell_c(\theta)$ given both z and x is straightforward. (e.g. class conditional Gaussian fitting, linear regression)
- \bullet With z unobserved, we need the log of a marginal probability:

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$$

which is the incomplete log likelihood.

12

16

17

• For any distribution $q(\mathbf{z})$ define expected complete log likelihood:

$$\ell_q(\theta; \mathbf{x}) = \langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_q \equiv \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} | \theta)$$

• Amazing fact: $\ell(\theta) \ge \ell_q(\theta) + \mathcal{H}(q)$ because of concavity of \log :

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta)$$

$$= \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$$

$$= \log \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$$

$$\geq \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$$

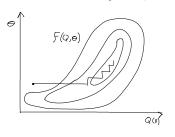
• Where the inequality is called *Jensen's inequality*. (It is only true for distributions: $\sum q(\mathbf{z}) = 1$; $q(\mathbf{z}) > 0$.)

Lower Bounds and Free Energy

 \bullet For fixed data $\mathbf{x},$ define a functional called the *free energy*:

$$F(q,\theta) \equiv \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \leq \ell(\theta)$$

• The EM algorithm is coordinate-ascent on F: E-step: $q^{t+1} = \operatorname{argmax}_{q} F(q, \theta^{t})$ M-step: $\theta^{t+1} = \operatorname{argmax}_{\theta} F(q^{t+1}, \theta^{t})$



M-step: maximization of expected ℓ_c

• Note that the free energy breaks into two terms:

$$\begin{split} F(q, \theta) &= \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} | \theta)}{q(\mathbf{z} | \mathbf{x})} \\ &= \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} | \theta) - \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}) \log q(\mathbf{z} | \mathbf{x}) \\ &= \ell_q(\theta; \mathbf{x}) + \mathcal{H}(q) = \text{average energy} + \text{entropy} \end{split}$$

(this is where its name comes from)

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ , is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

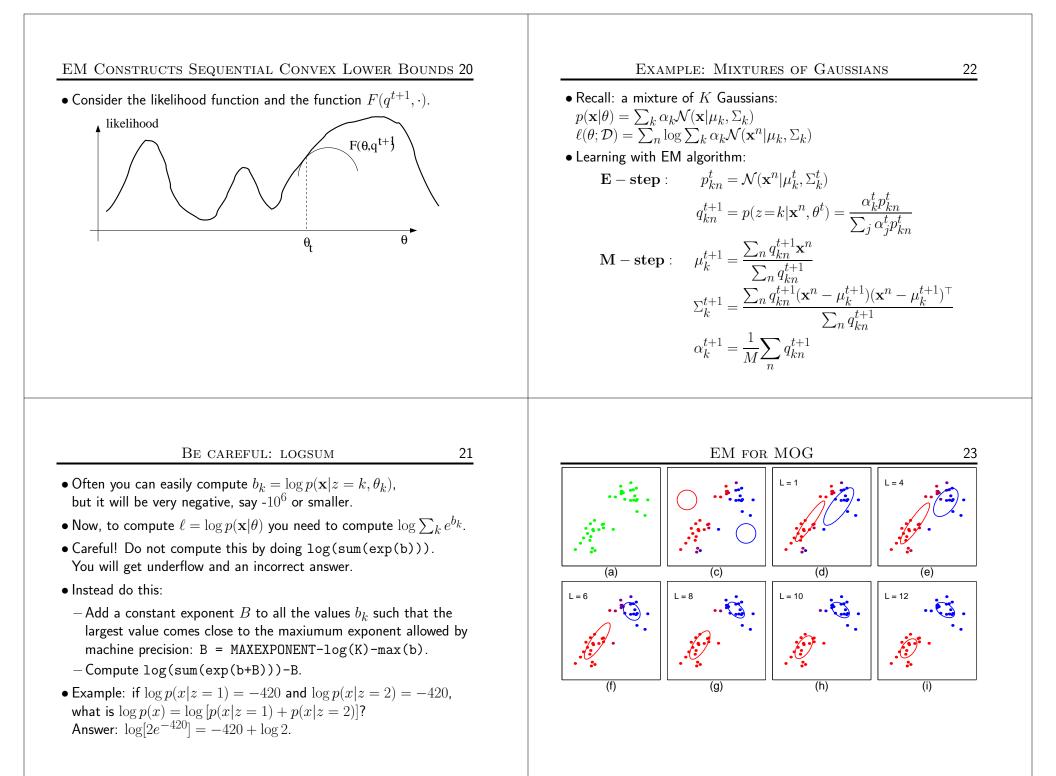
$$\theta^{t+1} = \operatorname{argmax}_{\theta} \ell_q(\theta; \mathbf{x}) = \operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

E-STEP: INFERRING LATENT POSTERIOR

- Claim: the optimim setting of q in the E-step is: $q^{t+1} = p(\mathbf{z}|\mathbf{x}, \theta^t)$
- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- \bullet Proof (easy): this setting saturates the bound $\ell(\theta;\mathbf{x}) \geq F(q,\theta)$

$$F(p(\mathbf{z}|\mathbf{x}, \theta^t), \theta^t) = \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}, \theta^t) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta^t)}{p(\mathbf{z}|\mathbf{x}, \theta^t)}$$
$$= \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}, \theta^t) \log p(\mathbf{x}|\theta^t)$$
$$= \log p(\mathbf{x}|\theta^t) \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}, \theta^t)$$
$$= \ell(\theta; \mathbf{x}) \cdot 1$$

• Can also show this result using variational calculus or the fact that $\ell(\theta) - F(q, \theta) = \mathrm{KL}[q || p(\mathbf{z} | \mathbf{x}, \theta)]$



DERIVATION OF M-STEP

• Expected complete log likelihood $\ell_q(\theta; D)$:

$$\sum_{n}\sum_{k}q_{kn}\left[\log\alpha_{k}-\frac{1}{2}(\mathbf{x}^{n}-\boldsymbol{\mu}_{k}^{t+1})^{\top}\boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}^{n}-\boldsymbol{\mu}_{k}^{t+1})-\frac{1}{2}\log|2\pi\boldsymbol{\Sigma}_{k}|\right]$$

 \bullet For fixed q we can optimize the parameters:

$$\begin{split} \frac{\partial \ell_q}{\partial \mu_k} &= \Sigma_k^{-1} \sum_n q_{kn} (\mathbf{x}^n - \mu_k) \\ \frac{\partial \ell_q}{\partial \Sigma_k^{-1}} &= \frac{1}{2} \sum_n q_{kn} \left[\Sigma_k^\top - (\mathbf{x}^n - \mu_k^{t+1}) (\mathbf{x}^n - \mu_k^{t+1})^\top \right] \\ \frac{\partial \ell_q}{\partial \alpha_k} &= \frac{1}{\alpha_k} \sum_n q_{kn} - \lambda \qquad (\lambda = M) \end{split}$$

• Fact: $\frac{\partial \log |A^{-1}|}{\partial A^{-1}} &= A^\top \text{ and } \frac{\partial \mathbf{x}^\top A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^\top$

COMPARE: K-MEANS

25

- The EM algorithm for mixtures of Gaussians is just like a soft version of the K-means algorithm with fixed priors and covariance.
- Instead of "hard assignment" in the E-step, we do "soft assignment" based on the softmax of the squared distance from each point to each cluster.
- Each centre is then moved to the *weighted mean* of the data, with weights given by soft assignments. In K-means, the weights are 0 or 1.

$$\begin{split} \mathbf{E} - \mathbf{step} : \qquad d_{kn}^t &= \frac{1}{2} (\mathbf{x}^n - \boldsymbol{\mu}_k^t)^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x}^n - \boldsymbol{\mu}_k^t) \\ q_{kn}^{t+1} &= \frac{\exp(-d_{kn}^t)}{\sum_j \exp(-d_{jn}^t)} = p(c_n^t = k | \mathbf{x}^n, \boldsymbol{\mu}^t) \\ \mathbf{M} - \mathbf{step} : \qquad \boldsymbol{\mu}_k^{t+1} &= \frac{\sum_n q_{kn}^{t+1} \mathbf{x}^n}{\sum_n q_{kn}^{t+1}} \end{split}$$

- A way of maximizing likelihood function for latent variable models. Finds ML parameters when the original (hard) problem can be broken up into two (easy) pieces:
- 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
- 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using our best guess (posterior) and updating the paramters based on this guess: **E-step**: $q^{t+1} = p(\mathbf{z}|\mathbf{x}, \theta^t)$ **M-step**: $\theta^{t+1} = \operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

A Report Card for EM

27

- Some good things about EM:
 - no learning rate parameter
 - -very fast for low dimensions
 - -each iteration guaranteed to improve likelihood
 - a dapts unused units rapidly
- Some bad things about EM:
 - can get stuck in local minima
- both steps require considering all explanations of the data which is an exponential amount of work in the dimension of θ
- EM is typically used with mixture models, for example mixtures of Gaussians or mixtures of experts. The "missing" data are the labels showing which sub-model generated each datapoint. Very common: also used to train HMMs, Boltzmann machines, ...

Partially Hidden Data

- Of course, we can learn when there are missing (hidden) variables on some cases and not on others.
- In this case the cost function was:

$$\ell(\theta; \mathcal{D}) = \sum_{\text{complete}} \log p(\mathbf{x}^c, \mathbf{y}^c | \theta) + \sum_{\text{missing}} \log \sum_{\mathbf{y}} \log p(\mathbf{x}^m, \mathbf{y} | \theta)$$

- Now you can think of this in a new way: in the E-step we estimate the hidden variables on the incomplete cases only.
- The M-step optimizes the log likelihood on the complete data plus the expected likelihood on the incomplete data using the E-step.

VARIANTS

29

28

• Sparse EM:

Do not recompute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a

while.

• Generalized (Incomplete) EM: It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step).