Lecture 10:

Markov and Hidden Markov Models

November 15, 2005

- Use past as state. Next output depends on previous output(s):

$$
\mathbf{y}_{t}=f\left[\mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots\right]
$$

order is number of previous outputs

- Add noise to make the system probabilistic:

$$
p\left(\mathbf{y}_{t} \mid \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots, \mathbf{y}_{t-k}\right)
$$

- Markov models have two problems:
- need big order to remember past "events"
- output noise is confounded with state noise
- The ML parameter estimates for a simple Markov model are easy:

$$
\begin{aligned}
p\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{T}\right) & =\prod_{t=k+1}^{T} p\left(\mathbf{y}_{t} \mid \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots, \mathbf{y}_{t-k}\right) \\
\log p(\{\mathbf{y}\}) & =\sum_{t=k+1}^{T} \log p\left(\mathbf{y}_{t} \mid \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots, \mathbf{y}_{t-k}\right)
\end{aligned}
$$

- Each window of $k+1$ outputs is a training case for the model
$p\left(\mathbf{y}_{t} \mid \mathbf{y}_{t-1}, \mathbf{y}_{t-2}, \ldots, \mathbf{y}_{t-k}\right)$.
- Example: for discrete outputs (symbols) and a 2nd-order markov model we can use the multinomial model:

$$
p\left(y_{t}=m \mid y_{t-1}=a, y_{t-2}=b\right)=\alpha_{m a b}
$$

The maximum likelihood values for α are:

$$
\alpha_{m a b}^{*}=\frac{\operatorname{num}\left[t \text { s.t. } y_{t}=m, y_{t-1}=a, y_{t-2}=b\right]}{\operatorname{num}\left[t \text { s.t. } y_{t-1}=a, y_{t-2}=b\right]}
$$

- A first order Markov Model $p\left(y_{2} \mid y_{1}\right)$ is also called a bigram model.
- If there are a huge number N of possible symbols (e.g. words in English) we might need an enormously long sequence to estimate even such a simple model. But a unigram (0-order) is too simple...
- There is a very clever way to regularlize this model, which is to constrain the transition matrix $p_{i j}=p\left(y_{2}=j \mid y_{1}=i\right)$ to be low rank, e.g. rank at most K where $K \ll N$.
- This has an interpretation as a conditional latent variable (mixture) model with K "topics":

$$
p_{i j}=p\left(y_{2}=j \mid y_{1}=i\right)=\sum_{k} p\left(y_{2}=j \mid z=k\right) p\left(z=k \mid y_{1}=i\right)
$$

- The model can be trained very simply using EM and gives very good predictions even with only a modest amount of training data.
- You can think of an HMM as:

A Markov chain with stochastic measurements.

or
A mixture model with states coupled across time.

- The future is independent of the past given the present.

However, conditioning on all the observations couples hidden states.

Add a latent (hidden) variable x_{t} to improve the model.

- HMM \equiv " probabilistic function of a Markov chain":

1. 1st-order Markov chain generates hidden state sequence (path):

$$
\mathrm{P}\left(x_{t+1}=j \mid x_{t}=i\right)=T_{i j} \quad \mathrm{P}\left(x_{1}=j\right)=\pi_{j}
$$

2. A set of output probability distributions $\mathbf{A}_{j}(\cdot)$ (one per state) converts state path into sequence of observable symbols/vectors

$$
\mathrm{P}\left(\mathbf{y}_{t}=y \mid x_{t}=j\right)=\mathbf{A}_{j}(\mathbf{y})
$$

- Even though hidden state seq. is 1st-order Markov, the output process is not Markov of any order [ex. 1111121111311121111131...]
- Speech recognition.
- Language modeling.
- Information retrieval.
- Motion video analysis/tracking.
- Protein sequence and genetic sequence alignment and analysis.
- Financial time series prediction.

- Hidden states $\left\{x_{t}\right\}$, outputs $\left\{\mathbf{y}_{t}\right\}$

Joint probability factorizes:

$$
\begin{aligned}
\mathrm{P}(\{x\},\{\mathbf{y}\}) & =\prod_{t=1}^{T} \mathrm{P}\left(x_{t} \mid x_{t-1}\right) \mathrm{P}\left(\mathbf{y}_{t} \mid x_{t}\right) \\
& =\pi_{x_{1}} \prod_{t=1}^{\tau-1} T_{x_{t}, x_{t+1}} \prod_{t=1}^{\tau} A_{x_{t}}\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

- NB: Data are not i.i.d. Everything is coupled across time.
- Three problems: computing probabilities of observed sequences, inference of hidden state sequences, learning of parameters.
- We want to compute:

$$
L=\mathrm{P}(\{\mathbf{y}\})=\sum_{\{x\}} \mathrm{P}(\{x\},\{\mathbf{y}\})
$$

- There exists a clever "forward recursion" to compute this huge sum very efficiently. Define $\alpha_{j}(t)$:

$$
\begin{aligned}
\alpha_{j}(t) & =\mathrm{P}\left(\mathbf{y}_{1}^{t}, x_{t}=j\right) \\
\alpha_{j}(1) & =\pi_{j} \mathbf{A}_{j}\left(\mathbf{y}_{1}\right) \quad \text { induction to the rescue... } \\
\alpha_{k}(t+1) & =\left\{\sum_{j} \alpha_{j}(t) T_{j k}\right\} A_{k}\left(\mathbf{y}_{t+1}\right)
\end{aligned}
$$

- Notation: $x_{a}^{b} \equiv\left\{x_{a}, \ldots, x_{b}\right\} ; \mathbf{y}_{a}^{b} \equiv\left\{\mathbf{y}_{a}, \ldots, \mathbf{y}_{b}\right\}$
- This enables us to easily (cheaply) compute the desired likelihood L since we know we must end in some possible state:

$$
L=\sum_{k} \alpha_{k}(\tau)
$$

Probability of an Observed Sequence

- To evaluate the probability $\mathrm{P}(\{\mathbf{y}\})$, we want:

$$
\begin{aligned}
\mathrm{P}(\{\mathbf{y}\}) & =\sum_{\{x\}} \mathrm{P}(\{x\},\{\mathbf{y}\}) \\
\mathrm{P}(\text { observed sequence }) & =\sum_{\text {all paths }} \mathrm{P}(\text { observed outputs, state path })
\end{aligned}
$$

- Looks hard! (\#paths $=N^{\tau}$). But joint probability factorizes:

$$
\begin{aligned}
& \mathrm{P}(\{\mathbf{y}\})= \sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{\tau}} \prod_{t=1}^{T} \mathrm{P}\left(x_{t} \mid x_{t-1}\right) \mathrm{P}\left(\mathbf{y}_{t} \mid x_{t}\right) \\
&= \sum_{x_{1}} \mathrm{P}\left(x_{1}\right) \mathrm{P}\left(\mathbf{y}_{1} \mid x_{1}\right) \sum_{x_{2}} \mathrm{P}\left(x_{2} \mid x_{1}\right) \mathrm{P}\left(\mathbf{y}_{2} \mid x_{2}\right) \cdots \\
& \quad \sum_{x_{\tau}} \mathrm{P}\left(x_{\tau} \mid x_{\tau-1}\right) \mathrm{P}\left(\mathbf{y}_{\tau} \mid x_{\tau}\right)
\end{aligned}
$$

- By moving the summations inside, we can save a lot of work.
- Naive algorithm:

1. start bug in each state at $t=1$ holding value 0
2. move each bug forward in time by making copies of it and incrementing the value of each copy by the probability of the transition and output emission
3. go to 2 until all bugs have reached time τ
4. sum up values on all bugs

time

- Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace all the bugs with a single bug carrying the sum of their values

time
- This is exactly dynamic programming.
- We compute these quantities efficiently using another recursion. Use total prob. of all paths going through state i at time t to compute the conditional prob. of being in state i at time t :

$$
\begin{aligned}
\gamma_{i}(t) & =\mathrm{P}\left(x_{t}=i \mid \mathbf{y}_{1}^{\tau}\right) \\
& =\alpha_{i}(t) \beta_{i}(t) / L
\end{aligned}
$$

where we defined:

$$
\beta_{j}(t)=\mathrm{P}\left(\mathbf{y}_{t+1}^{\tau} \mid x_{t}=j\right)
$$

- There is also a simple recursion for $\beta_{j}(t)$:

$$
\begin{aligned}
& \beta_{j}(t)=\sum_{k} T_{j k} A_{k}\left(\mathbf{y}_{t+1}\right) \beta_{k}(t+1) \\
& \beta_{j}(\tau)=1
\end{aligned}
$$

- $\alpha_{i}(t)$ gives total inflow of prob. to node (t, i)
$\beta_{i}(t)$ gives total outflow of prob.

Forward-Backward Algorithm

- $\alpha_{i}(t)$ gives total inflow of prob. to node (t, i)
$\beta_{i}(t)$ gives total outflow of prob.

- Bugs again: we just let the bugs run forward from time 0 to t and backward from time τ to t.
- In fact, we can just do one forward pass to compute all the $\alpha_{i}(t)$ and one backward pass to compute all the $\beta_{i}(t)$ and then compute any $\gamma_{i}(t)$ we want. Total cost is $O\left(M^{2} T\right)$.
- Since $\sum_{x_{t}} \gamma\left(x_{t}\right)=1$, we can compute the likelihood at any time using the results of the $\alpha-\beta$ recursions:

$$
L=p(\{\mathbf{y}\})=\sum_{x_{t}} \alpha\left(x_{t}\right) \beta\left(x_{t}\right)
$$

- In the forward calculation we proposed originally, we did this at the final timestep $t=\tau$:

$$
L=\sum_{x_{\tau}} \alpha\left(x_{\tau}\right)
$$

because $\beta_{\tau}=1$.

- This is a good way to check your code!
- Complete log likelihood:

$$
\begin{aligned}
\log p(x, y) & =\log \left\{\pi_{x_{1}} \prod_{t=1}^{\tau-1} T_{x_{t}, x_{t+1}} \prod_{t=1}^{\tau} A_{x_{t}}\left(\mathbf{y}_{t}\right)\right\} \\
& =\log \left\{\prod_{i} \pi_{i}^{\left[x_{1}^{i}\right]} \prod_{t=1}^{\tau-1} \prod_{j} T_{i j}^{\left[x_{t}^{i}, x_{t+1}^{j}\right]} \prod_{t=1}^{\tau} \prod_{k} A_{k}\left(\mathbf{y}_{t}\right)^{\left[x_{t}^{k}\right]}\right\} \\
& =\sum_{i}\left[x_{1}^{i}\right] \log \pi_{i}+\sum_{t=1}^{\tau-1} \sum_{j}\left[x_{t}^{i}, x_{t+1}^{j}\right] \log T_{i j}+\sum_{t=1}^{\tau} \sum_{k}\left[x_{t}^{k}\right] \log A_{k}\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

where the indicator $\left[x_{t}^{i}\right]=1$ if $x_{t}=i$ and 0 otherwise

- Statistics we need from the E-step are:
$p\left(x_{t} \mid\{\mathbf{y}\}\right)$ and $p\left(x_{t}, x_{t+1} \mid\{\mathbf{y}\}\right)$.
- We saw how to get single time marginals $p\left(x_{t} \mid\{\mathbf{y}\}\right)$, but what about two-frame estimates $p\left(x_{t}, x_{t+1} \mid\{\mathbf{y}\}\right)$?

1. Intuition: if only we knew the true state path then ML parameter estimation would be trivial.
2. But: can estimate state path using the DP trick.
3. Baum-Welch algorithm (special case of EM): estimate the states, then compute params, then re-estimate states, and so on ...
4. This works and we can prove that it always improves likelihood.
5. However: finding the ML parameters is NP hard, so initial conditions matter a lot and convergence is hard to tell.

- Need the cross-time statistics for adjacent time steps:

$$
\xi_{i j}=p\left(x_{t}=i, x_{t+1}=j \mid\{\mathbf{y}\}\right)
$$

- This can be done by rewriting:

$$
\begin{aligned}
p\left(x_{t}, x_{t+1} \mid\{\mathbf{y}\}\right) & =p\left(x_{t}, x_{t+1},\{\mathbf{y}\}\right) / p(\{\mathbf{y}\}) \\
& =p\left(x_{t}, \mathbf{y}_{1}^{t}\right) p\left(x_{t+1}, \mathbf{y}_{t+1}^{\tau} \mid x_{t}, \mathbf{y}_{1}^{t}\right) / L \\
& =p\left(x_{t}, \mathbf{y}_{1}^{t}\right) p\left(x_{t+1} \mid x_{t}\right) p\left(\mathbf{y}_{t+1} \mid x_{t+1}\right) p\left(y_{t+2}^{\tau} \mid x_{t+1}\right) / L \\
& =\alpha_{i}(t) T_{i j} \mathbf{A}_{j}\left(\mathbf{y}_{t+1}\right) \beta_{j}(t+1) / L \\
& =\xi_{i j}
\end{aligned}
$$

- This is the expected number of transitions from state i to state j that begin at time t, given the observations.
- It can be computed with the same α and β recursions.
- Initial state distribution: expected \#times in state i at time 1 :

$$
\hat{\pi}_{i}=\gamma_{i}(1)
$$

- Expected \#transitions from state i to j which begin at time t :

$$
\xi_{i j}(t)=\alpha_{i}(t) T_{i j} \mathbf{A}_{j}\left(\mathbf{y}_{t+1}\right) \beta_{j}(t+1) / L
$$

so the estimated transition probabilities are:

$$
\hat{T}_{i j}=\sum_{t=1}^{\tau-1} \xi_{i j}(t) / \sum_{t=1}^{\tau-1} \gamma_{i}(t)
$$

- The output distributions are the expected number of times we observe a particular symbol in a particular state:

$$
\hat{A}_{j}(y)=\sum_{t \mid \mathbf{y}_{t}=y} \gamma_{j}(t) / \sum_{t=1}^{\tau} \gamma_{j}(t)
$$

- Use many HMMs for recognition by:

1. training one HMM for each class (requires labelled training data)
2. evaluating probability of an unknown sequence under each HMM
3. classifying unknown sequence: HMM with highest likelihood

- This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly \& efficiently.)
2. Give some training sequences, estimate model parameters. (We can find the local maximum of parameter space nearest our starting point.)

- The numbers $\gamma_{j}(t)$ above gave the probability distribution over all states at any time.
- By choosing the state $\gamma_{*}(t)$ with the largest probability at each time, we can make an "average" state path. This is the path with the maximum expected number of correct states.
- But it is not the single path with the highest likelihood of generating the data. In fact it may be a path of probability zero!
- To find the single best path, we do Viterbi decoding which is just Bellman's dynamic programming algorithm applied to this problem.
- The recursions look the same, except with max instead of \sum.
- Bugs once more: same trick except at each step kill all bugs but the one with the highest value at the node.
- There is also a modified Baum-Welch training based on the Viterbi decode. Like K-means instead of mixtures of Gaussians.
- Character sequences (discrete outputs)

- Geyser data (continuous outputs)

- One way to regularize large transition matrices is to constrain them to be relatively sparse: instead of being allowed to transition to any other state, each state has only a few possible successor states.
- For example if each state has at most p possible next states then the cost of inference is $O(p K T)$ and the number of parameters is $O(p K+K M)$ which are both linear in the number of states.
An extremely effective way to constrain the transitions is to order the states in the HMM and allow transitions only to states that come
- later in the ordering. Such models are known as "linear HMMs", "chain HMMs" or "left-to-right HMMs". Transition matrix is upperdiagonal (usually only has a few bands).

- Two problems:
- for high dimensional outputs, lots of parameters in each $\mathbf{A}_{j}(\mathbf{y})$
- with many states, transition matrix has many ${ }^{2}$ elements
- First problem: full covariance matrices in high dimensions or discrete symbol models with many symbols have lots of parameters. To estimate these accurately requires a lot of training data. Instead, we often use mixtures of diagonal covariance Gaussians.

- For discrete data, we can use mixtures of base rates.
- We can also tie parameters across states.

- A "profile HMM" or "string-edit" HMM is used for probabilistically matching an observed input string to a stored template pattern with possible insertions and deletions.
- Three kinds of states: match, insert, delete.
m_{n} - use position n in the template to match an observed symbol i_{n} - insert extra symbol(s) observations after template position n d_{n} - delete (skip) template position n
- If you just implement things as I have described them, they will not work at all. Why? Remember logsum..
- Numerical scaling: the probability values that the bugs carry get tiny for big times and so can easily underflow. Good rescaling trick:

$$
\rho_{t}=\mathrm{P}\left(\mathbf{y}_{t} \mid \mathbf{y}_{1}^{t-1}\right) \quad \alpha(t)=\tilde{\alpha}(t) \prod_{t^{\prime}=1}^{t} \rho_{t^{\prime}}
$$

(of course you could always use logsum but that's less efficient)

- Multiple observation sequences: can be dealt with by averaging numerators and averaging denominators in the ratios given above.
- Initialization: mixtures of base rates or mixtures of Gaussians
- Generation of new sequences. Just roll the dice!
- Sampling a single state sequence from the posterior $p(\{x\} \mid\{\mathbf{y}\})$. Harder...but possible. (can you think of how?)

$\mathrm{i}=$ insert $\quad \mathrm{d}=$ delete $\quad \mathrm{m}=$ match
(state transition diagram)
- number of states $=3$ (length_template)
- Only insert and match states can generate output symbols.
- Once you visit or skip a match state you can never return to it.
- At most 3 destination states from any state, so $S_{i j}$ very sparse.
- Storage/Time cost linear in \#states, not quadratic.
- State variables and observations no longer in sync.
(e.g. y1:m1; d2; y2:i2; y3:i2 ; y4:m3; ...)

Computational Costs in HMMs

- The number of parameters in the model was $O\left(K^{2}+K M\right)$ for M output symbols or dimensions.
- Recall the forward-backward algorithm for inference of state probabilities $p\left(x_{t} \mid\{\mathbf{y}\}\right)$.
- The storage cost of this procedure was $O\left(K T+K^{2}\right)$ for K states and a sequence of length T.
- The time complexity was $O\left(K^{2} T\right)$.

- Markov ('13) and later Shannon ('48,'51) studied Markov chains.
- Baum et. al (BP'66, BE'67, BS'68, BPSW'70, B'72) developed much of the theory of "probabilistic functions of Markov chains".
- Viterbi ('67) (now Qualcomm) came up with an efficient optimal decoder for state inference.
- Applications to speech were pioneered independently by:
- Baker ('75) at CMU (now Dragon)
- Jelinek's group ('75) at IBM (now Hopkins)
- communications research division of IDA (Ferguson '74 unpublished)
- Dempster, Laird \& Rubin ('77) recognized a general form of the Baum-Welch algorithm and called it the $E M$ algorithm.
- A landmark open symposium in Princeton ('80) hosted by IDA reviewed work till then.
- How do we fill in the numbers for a DP grid using a string-edit HMM?
- Almost the same as normal except:
- Now the grid is 3 times its normal height.
- It is possible to move down without moving right if you move into a deletion state.
eg: template length $=4$, test sequence length $=5$

- The equations for the delete states in profile HMMs need to be modified slightly, since they don't emit any symbols.
- For delete states k, the forward equations become:

$$
\alpha_{k}(t)=\sum_{j} \alpha_{j}(t) S_{j k}
$$

which should be evaluated after the insert and match state updates.

- For all states, the backward equations become:

$$
\beta_{k}(t)=\sum_{i \in \text { match,ins }} S_{k i} \beta_{i}(t+1) A_{i}\left(\mathbf{y}_{t+1}\right)+\sum_{j \in \text { del }} S_{k j} \beta_{j}(t)
$$

which should be evaluated first for delete states k; then for the rest.

- The gamma equations remain the same:

$$
\gamma_{i}(t)=p\left(x_{t}=i \mid \mathbf{y}_{1}^{T}\right)=\alpha_{i}(t) \beta_{i}(t) / L
$$

- Notice that each summation above contains only three terms, regardless of the number of states!

Profile HMM DP Grid
$C_{x \rightarrow x^{\prime}}=-\log T_{x, x^{\prime}}-\log A_{x^{\prime}}\left(\mathbf{y}_{t}\right)$ if x^{\prime} is match or insert
$C_{x \rightarrow x^{\prime}}=-\log T_{x, x^{\prime}} \quad$ if x^{\prime} is a delete state

State $x \in\left\{m_{n}, i_{n}, d_{n}\right\}$ has nonzero transition probabilities only to states $x^{\prime} \in\left\{m_{n+1}, i_{n}, d_{n+1}\right\}$.

Initializing Forward-Backward for Profile HMMs 35

- The initialization equations for Profile HMMs also need to be fixed up, to reflect the fact that the model can only begin in states m_{1}, i_{1}, d_{1} and can only finish in states m_{N}, i_{N}, d_{N}.
- In particular, $\pi_{j}=0$ if j is not one of m_{1}, i_{1}, d_{1}.
- When initializing $\alpha_{k}(1)$, delete states k have zeros, and all other states have the product of the transition probabilities through only delete states up to them, plus the final emission probability.
- When initializing $\beta_{k}(T)$, the same kind of adjustment must be made.

- Forward-backward including scaling tricks

$$
\begin{aligned}
& q_{j}(t)=\mathbf{A}_{j}\left(\mathbf{y}_{t}\right) \\
& \begin{array}{lrl}
\alpha(1) & =\pi \cdot * q(1) & \rho(1)=\sum \alpha(1) \\
\alpha(1) & =\alpha(1) / \rho(1) & \\
\alpha(t)=\left(T^{\prime} * \alpha(t-1)\right) . * q(t) & \rho(t)=\sum \alpha(t) & \alpha(t)=\alpha(t) / \rho(t)
\end{array} \quad[t=2: \tau] \\
& \beta(\tau)=1 \\
& \beta(t)=T *(\beta(t+1) \cdot * q(t+1) / \rho(t+1) \quad[t=(\tau-1): 1] \\
& \xi=0 \\
& \xi=\xi+T . *\left(\alpha(t) *(\beta(t+1) \cdot * q(t+1))^{\prime}\right) / \rho(t+1) \quad[t=1:(\tau-1)] \\
& \gamma=(\alpha . * \beta) \\
& \log \mathrm{P}\left(\mathbf{y}_{1}^{\tau}\right)=\sum \log (\rho(t))
\end{aligned}
$$

- Baum-Welch parameter updates

$$
\delta_{j}=0 \quad \hat{T}_{i j}=0 \quad \hat{\pi}=0 \quad \hat{A}=0
$$

for each sequence, run forward backward to get γ and ξ, then

$$
\begin{gathered}
\hat{T}=\hat{T}+\xi \quad \hat{\pi}=\hat{\pi}+\gamma(1) \quad \delta=\delta+\sum_{t} \gamma(t) \\
\hat{A}_{j}(\mathbf{y})=\sum_{t \mid \mathbf{y}_{t}=y} \gamma_{j}(t) \quad \text { or } \quad \hat{A}=\hat{A}+\sum_{t} \mathbf{y}_{t} \gamma(t) \\
\hat{T}_{i j}=\hat{T}_{i j} / \sum_{k} \hat{T}_{i k} \quad \hat{\pi}=\hat{\pi} / \sum \hat{\pi} \quad \hat{A}_{j}=\hat{A}_{j} / \delta_{j}
\end{gathered}
$$

