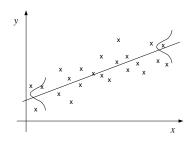
LECTURE 4:

REGRESSION I

Sam Roweis

REMINDER: REGRESSION

- Multiple inputs x, mixed cts. and discrete.
- Continuous output(s) y. (Consider each separately.)
- Goal: predict output on future unseen inputs.
- Still conditional density estimation: p(y|x) (c.f. classification)
- For now, consider continuous inputs and a single output...



CONSTANT MODEL

- Constant model says y = a, independent of x. (What were the constant models in classification?)
- Q: What should we use for a?
 The mean? The median? The mode (for quantized data)?
- A: Depends on your error function (noise model).
- For squared error, the mean is best:

$$e = \sum_{n=1}^{N} (y_n - a)^2$$
$$\frac{de}{da} = 2\sum_{n} (y_n - a)$$
$$a^* = \frac{1}{N} \sum_{n} y_n$$

Absolute Error

• For abs error, we get the median:

$$\begin{split} e &= \sum_{n=1}^N |y_n - a| \\ \frac{de}{da} &= \sum_n \mathrm{sign}[a - y_n] \\ &= (\#y_n \mathrm{smaller\ than\ a}) - (\#y_n \mathrm{bigger\ than\ a}) \\ a^* &= \mathrm{median}[y_1 \dots y_N] \end{split}$$

- What if there are an even number of datapoints?
 Or exact duplicates?
 Then any value between the middle two gives the same error.
- Even for constant model life is not so simple...

LINEAR MODEL

• Linear model:

l:
$$y = \sum w_i x_i + w_0 = \mathbf{w}^\top \mathbf{x} + w_0 = \mathbf{w}^\top \mathbf{x}$$
 line or hyperplane.
$$\mathbf{w} = \mathbf{w}^\top \mathbf{x} + w_0 = \mathbf{w}^\top \mathbf{x}$$

• Geometry: a line or hyperplane. The bias term w_0 offsets the line (hyperplane) from the origin. Think of vertical springs connecting y_n to line $\mathbf{w}^{\top}\mathbf{x}$.

Goal: minimze energy.

ullet Usually augment x with constant and absorb bias into w.

ullet Q: What's the best \mathbf{w} ?

• A: Now you know, it depends on your error function!

LINEAR REGRESSION

• For squared error, the problem is *linear regression*, or *ordinary least squares*, and we can get a direct solution:

$$y = \mathbf{w}^{\top} \mathbf{x}$$

$$e = \sum_{n} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2$$

$$\mathbf{w}^* = (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{X} \mathbf{y}^{\top}$$

- \bullet X is matrix of inputs (one per column); y is output row vector.
- This is one of the most famous equations in all of linear algebra: the *discrete Weiner filter*.
- It says: take the correlation between inputs and outputs, but don't be fooled by large input-input correlations.
- Constant model corresponds to $w_0 = a, w_i = 0$.
- Predicted values are $\hat{y}_n = \mathbf{y} \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{x}_n$.

PROBABILISTIC MODELS

• What probabilistic model corresponds to squared error? Gaussian:

$$p(y|\mathbf{x}, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y - \mathbf{w}^\top \mathbf{x})^2}$$
$$\log p(y|\mathbf{x}, \mathbf{w}) = -\frac{1}{2}(y - \mathbf{w}^\top \mathbf{x})^2 + \text{const}$$
$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \sum_n \log p(y_n|\mathbf{x}_n, \mathbf{w}) \qquad \text{for iid data}$$

- So minimzing squared error ≡ maximum Gaussian noise likelihood
- What probabilistic model corresponds to absolute error? Laplacian:

$$p(y|\mathbf{x}, \mathbf{w}) = ae^{-a|y-\mathbf{w}^{\top}\mathbf{x}|}$$
$$\log p(y|\mathbf{x}, \mathbf{w}) = -a|y-\mathbf{w}^{\top}\mathbf{x}| + \text{const}$$

ORDINARY LEAST SQUARES

• Can we estimate the noise level? Yes. An unbiased estimate is:

$$\sigma^2 \approx \frac{1}{N-d-1} \sum_n (y_n - \mathbf{w}^\top \mathbf{x})^2$$

What about the variance of parameters? Yes, also:

$$\operatorname{var}[\mathbf{w}] = (\mathbf{X}\mathbf{X}^{\top})^{-1}\sigma^2$$

ullet This allows us to put some crude error bars on our predictions: $p(\hat{y}|\mathbf{x})$ is Gaussian with

$$\begin{aligned} &\mathsf{mean} = \mathbf{w}^{\top} \mathbf{x} \\ &\mathsf{variance} = \mathbf{w}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{w} + \sigma^2 \end{aligned}$$

ABSOLUTE ERROR

What if we use absolute error with the linear model?
 What's the equivalent of the median estimator?

$$\min_{\mathbf{w}} \sum_{n} |y_n - \mathbf{w}^{\top} \mathbf{x}_n|$$

• We need to solve a linear programming problem:

$$\min \sum_n t_n$$
 subject to
$$-t_n \leq y_n - \mathbf{w}^\top \mathbf{x}_n \leq t_n$$

MULTIPLE OUTPUTS

- With multiple outputs, we can just treat each one separately.
- Amazingly, this is true even if the output noise is correlated.
- However, if the output noises are correlated *and* the noise changes from case to case, then the solutions are coupled.

REGULARIZATION

- What? You thought the linear model was simple enough that we don't need to regularlize it? Everything needs regularization!
- ullet Example: you have fewer training cases than input dimensions. Now XX^{\top} will not be invertible.
- Example: certain input dimensions are useless (on average) at predicting the output. But because of noise or small samples, you can always reduce the training error a tiny bit by putting huge weights on these dimensions. At test time you get killed.
- Two common solutions:
 - input subset selection
- parameter shrinkage

Subset Selection

- ullet Use only a few x_i as inputs, discard the rest. Advantages: introduces inductive bias, produces small models. Disadvantage: high variability because of binary choices.
- ullet Forward stepwise selection: start with constant and iteratively add the single x_i which most decreases error.
- Backward stepwise selection: start with all inputs and iteratively remove the single x_i which least increases error.
- Leaps-and-Bounds: Furnival and Wilson (74) came up with a very clever branch-and-bound trick for efficiently trying *all possible* subsets. Works for up to \approx 40 variables.
- Choose subset size with cross validation or F-statistic tests.

SHRINKAGE

- Idea: pull ("shrink") estimated parameters towards some fixed values that do not depend on the data. (Whoa....)
- Usually we shrink towards zero.
- Thus: penalize coefficients based on their size.
- For a penalty which is the sum of the squares of the weights, this is known as "weight decay" or "ridge regression":

$$y = \mathbf{w}^{\top} \mathbf{x}$$

$$e = \sum_{n} (y_n - \mathbf{w}^{\top} \mathbf{x})^2 + \lambda \sum_{i} w_i^2$$

$$\mathbf{w}^* = (\mathbf{X} \mathbf{X}^{\top} + \lambda I)^{-1} \mathbf{X} \mathbf{y}^{\top}$$

where \boldsymbol{I} is the identity matrix.

LASSO

- Shrinkage has less variance but doesn't give small models. Can we get the best of both worlds?
- Lasso: squared error with absolute weight penalty.

$$e = \sum_{n} (y_n - \mathbf{w}^{\mathsf{T}} \mathbf{x})^2 + \lambda \sum_{i} |w_i|$$

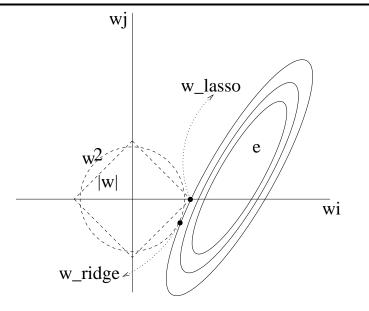
- Requires quadratic programming to solve, but still unique optimum.
- Cool thing happens: many coefficients go exactly to zero.

RIDGE REGRESSION

- Same trick as when we were training Gaussian classifiers.
- \bullet Set λ with cross-validation.
- ullet There is a trick which lets you compute the leave-one-out error very efficiently without refitting N times.
- Warning: ridge regression is *not* invariant to input rescaling.

 Often we want to "whiten/sphere" inputs first (i.e. rescale them so their sample covariance is a multiple of the identity matrix).

ERROR FUNCTION GEOMETRY



BEYOND LINEAR REGRESSION

- We can augment the inputs, not just with a constant to get a bias term, but with lots of other things.
- If we decide beforehand on how to augment the input, this is still linear regression:

$$y = \sum_{j} w_{j} h_{j}(\mathbf{x})$$

- \bullet For linear regression, just use $h_0 = 1, h_j = x_j$.
- Optimal weights are still easy to find:

$$e = \sum_{n} (y_n - \mathbf{w}^{\mathsf{T}} \mathbf{h}(\mathbf{x}))^2$$
$$\mathbf{w}^* = (\mathbf{H} \mathbf{H}^{\mathsf{T}})^{-1} \mathbf{H} \mathbf{y}^{\mathsf{T}}$$

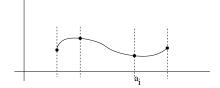
where $\mathbf{h}(\mathbf{x})$ is a vector of basis function outputs and \mathbf{H} is a matrix with columns $\mathbf{h}(\mathbf{x}_n)$.

SPLINES

• You can construct a special basis set that gives piecewise constant functions between pre-specified split points ("knots") a_i :

$$h_1 = (x-a_1)_+$$
 $h_2 = (x-a_2)_+ \dots h_k = (x-a_k)_+$ $h_{k+1} = x$ $h_{k+2} = 1$ where $(x-a_i)_+$ is the positive part of $(x-a_i)_+$

- To enforce continuity up to the $(r-1)^{st}$ derivative, use $h_1 = (x-a_1)_+^r \dots h_k = (x-a_k)_+^r \quad h_{k+1} = x^r \dots h_{k+r+1} = 1$
- Most common: *cubic splines*, corresponding to r = 3.
- Can also enforce linearity beyond edges: natural cubic spline.



GENERALIZED LINEAR MODELS

- Any fixed, generalized basis set that depends on the inputs can be used to make a *generalized linear model*.
- Elements of basis are called dictionary functions.
- Examples include splines, radial basis functions, wavelets, etc.
- Common things to add: quadratic or other polynomial terms, sinusoidal terms, exponentials, square roots, logarithms, etc.
- Terms can depend on more than one input e.g.

$$h_j(\mathbf{x}) = x_2 x_8 x_9$$

$$h_j(\mathbf{x}) = ||\mathbf{x}||^2$$

$$h_j(\mathbf{x}) = [a \le x_i \le b][c \le x_j \le d]$$

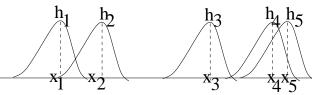
- These models can also be use for classification: as inputs to logistic/softmax regression, as a space for Fisher disciminants/Gaussians class-conditionals, KNN, etc.
- This is the "kernel" idea, which I hope to get to later!

RADIAL BASIS FUNCTIONS

 One way to generate a nice automatic basis is to place a dictionary element on each input datapoint, whose value depends on the distance of the input from the point it is on top of:

$$h_n(\mathbf{x}) = \exp\left[-\frac{1}{2\sigma^2}\|\mathbf{x} - \mathbf{x}_n\|^2\right]$$

 \bullet Tricky part is setting σ^2 .



NEURAL NETWORKS

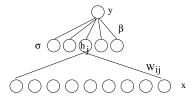
• Another generalized linear model, this time with the basis set:

$$h_j = g\left(\sum_i w_{ij} x_i\right)$$

with g() a "squashing" function with limited outputs, e.g.

$$g(z) = \frac{1}{1 + e^{-z}} \qquad g(z) = \tanh(z)$$

 \bullet The outputs h_i are known as the "hidden layer".



MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

 \bullet Piecewise constant 1D splines with knots at each data point value in each dimension. Also the "reflected pairs".

$$h_{ni}(\mathbf{x}) = (x_i - x_{ni})_+ \qquad h_{2ni}(\mathbf{x}) = (x_{ni} - x_i)_+$$

- Now use forward stepwise regression, chosing from these basic elements *and* any product between them and an existing dictionary element.
- Then do backwards deletion.
- Another Stanford masterpiece. (What's in the water in Palo Alto?)

REGULARIZATION: LEARNING THE BASIS

- In all the examples above, the basis functions were fixed.
- Ideally, we'd like to adjust the basis set also.
 E.g. where are the knots for splines, the centres for RBF's, what are the input-to-hidden weights for neural networks?
- Three strategies: shrinkage, subset, adaptive.
- Shrinkage: of course, we can also do ridge regression on these generalized basis sets, by penalizing the coefficients.
 For splines, this technique gives smoothing splines.
- We can also start with a huge dictionary and try to pick a few elements. This is *subset selection* from a broader choice set.
- Lastly, we can have a fixed number of *adaptive* elements. Next lecture we can see how to do this, for certain error functions, using *gradient descent*. But the solutions are no longer optimal.

THINGS I WON'T COVER

- Regression trees (very similar to MARS but worse).
- Partial Least Squares
- Empirical Bayes (ML-II)
 Automatic Relevance Determination (ARD)
- Canonical Correlation Analysis

More reading: Hastie et al. Ch4,5,9.4