
Lecture 10:

Markov and Hidden Markov Models

Sam Roweis

November 16, 2004

Probabilistic Models for Time Series

• Generative models for time-series:
To get interesting variability need noise.
To get correlations across time, need some system state.

internal
state outputs

noise
sources

• Time: discrete
States: discrete or continuous
Outputs: discrete or continuous

• Today: discrete state
similar to finite state automata; Moore/Mealy machines

Markov Models

• Use past as state. Next output depends on previous output(s):

yt = f [yt−1,yt−2, . . .]

order is number of previous outputs

y1 y2 y3

y0

yky4 y5

• Add noise to make the system probabilistic:

p(yt|yt−1,yt−2, . . . ,yt−k)

• Markov models have two problems:

– need big order to remember past “events”

– output noise is confounded with state noise

Learning Markov Models

• The ML parameter estimates for a simple Markov model are easy:

p(y1,y2, . . . ,yT) =

T
∏

t=k+1

p(yt|yt−1,yt−2, . . . ,yt−k)

log p({y}) =

T
∑

t=k+1

log p(yt|yt−1,yt−2, . . . ,yt−k)

• Each window of k + 1 outputs is a training case for the model
p(yt|yt−1,yt−2, . . . ,yt−k).

• Example: for discrete outputs (symbols) and a 2nd-order markov
model we can use the multinomial model:

p(yt = m|yt−1 = a, yt−2 = b) = αmab

The maximum likelihood values for α are:

α∗
mab =

num[t s.t. yt = m, yt−1 = a, yt−2 = b]

num[t s.t. yt−1 = a, yt−2 = b]

Hidden Markov Models (HMMs)

Add a latent (hidden) variable xt to improve the model.

• HMM ≡ “ probabilistic function of a Markov chain”:

1. 1st-order Markov chain generates hidden state sequence (path):

P(xt+1 = j|xt = i) = Tij P(x1 = j) = πj

2. A set of output probability distributions Aj(·) (one per state)
converts state path into sequence of observable symbols/vectors

P(yt = y|xt = j) = Aj(y)

(state transition diagram)

• Even though hidden state seq. is 1st-order Markov, the output
process is not Markov of any order
[ex. 1111121111311121111131. . .]

Links to Other Models

• You can think of an HMM as:
A Markov chain with stochastic measurements.

x1

y1 y2

x2 x3

y3

xt

yt

or
A mixture model with states coupled across time.

x1

y1 y2

x2 x3

y3

xt

yt

• The future is independent of the past given the present.
However, conditioning on all the observations couples hidden states.

Applications of HMMs

• Speech recognition.

• Language modeling.

• Information retrieval.

• Motion video analysis/tracking.

• Protein sequence and genetic sequence alignment and analysis.

• Financial time series prediction.

• . . .

HMM Model Equations

x1

y1 y2

x2 x3

y3

xt

yt

• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T
∏

t=1

P(xt|xt−1)P(yt|xt)

= πx1

τ−1
∏

t=1

Txt,xt+1

τ
∏

t=1

Axt(yt)

• NB: Data are not i.i.d. Everything is coupled across time.

• Three problems: computing probabilities of observed sequences,
inference of hidden state sequences, learning of parameters.

Probability of an Observed Sequence

• To evaluate the probability P({y}), we want:

P({y}) =
∑

{x}

P({x}, {y})

P(observed sequence) =
∑

all paths

P(observed outputs , state path)

• Looks hard! (#paths = N τ). But joint probability factorizes:

P({y}) =
∑

x1

∑

x2

· · ·
∑

xτ

T
∏

t=1

P(xt|xt−1)P(yt|xt)

=
∑

x1

P(x1)P(y1|x1)
∑

x2

P(x2|x1)P(y2|x2) · · ·

∑

xτ

P(xτ |xτ−1)P(yτ |xτ)

• By moving the summations inside, we can save a lot of work.

The forward (α) recursion

• We want to compute:

L = P({y}) =
∑

{x}

P({x}, {y})

• There exists a clever “forward recursion” to compute this huge sum
very efficiently. Define αj(t):

αj(t) = P(yt
1 , xt = j)

αj(1) = πjAj(y1) induction to the rescue...

αk(t + 1) = {
∑

j

αj(t)Tjk}Ak(yt+1)

• Notation: xb
a ≡ {xa, . . . , xb}; yb

a ≡ {ya, . . . ,yb}

• This enables us to easily (cheaply) compute the desired likelihood L
since we know we must end in some possible state:

L =
∑

k

αk(τ)

Bugs on a Grid

• Naive algorithm:

1. start bug in each state at t=1 holding value 0

2. move each bug forward in time by making copies of it and
incrementing the value of each copy by the probability of the
transition and output emission

3. go to 2 until all bugs have reached time τ

4. sum up values on all bugs

st
at

es

time

Bugs on a Grid - Trick

• Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

st
at

es
timeα

• This is exactly dynamic programming.

Inference of Hidden States

• What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

p(xt|{y}) = γ(xt) =
p({y}|xt)p(xt)

p({y})

=
p(yt

1|xt)p(yτ
t+1|xt)p(xt)

p(yτ
1)

=
p(yt

1, xt)p(yτ
t+1|xt)

p(yτ
1)

p(xt|{y}) = γ(xt) =
α(xt)β(xt)

p(yτ
1)

where

αj(t) = P(yt
1 , xt = j)

βj(t) = p(yτ
t+1 | xt = j)

γi(t) = p(xt = i | yτ
1)

Forward-Backward Algorithm

• We compute these quantities efficiently using another recursion.
Use total prob. of all paths going through state i at time t to
compute the conditional prob. of being in state i at time t:

γi(t) = P(xt = i | yτ
1)

= αi(t)βi(t)/L

where we defined:

βj(t) = P(yτ
t+1 | xt = j)

• There is also a simple recursion for βj(t):

βj(t) =
∑

k

TjkAk(yt+1)βk(t + 1)

βj(τ) = 1

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

Forward-Backward Algorithm

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

st
at

es

timeα β

• Bugs again: we just let the bugs run forward from time 0 to t and
backward from time τ to t.

• In fact, we can just do one forward pass to compute all the αi(t)
and one backward pass to compute all the βi(t) and then compute
any γi(t) we want. Total cost is O(M 2T).

Likelihood from Forward-Backward Algorithm

• Since
∑

xt
γ(xt) = 1, we can compute the likelihood at any time

using the results of the α − β recursions:

L = p({y}) =
∑

xt

α(xt)β(xt)

• In the forward calculation we proposed originally, we did this at the
final timestep t = τ :

L =
∑

xτ

α(xτ)

because βτ = 1.

• This is a good way to check your code!

Baum-Welch (EM) Training

1. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial.

2. But: can estimate state path using the DP trick.

3. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on . . .

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP hard, so initial
conditions matter a lot and convergence is hard to tell.

lik
el

ih
oo

d

parameter space

Parameter Estimation with EM

• Complete log likelihood:

log p(x, y) = log{πx1

τ−1
∏

t=1

Txt,xt+1

τ
∏

t=1

Axt(yt)}

= log{
∏

i

π
[xi

1]
i

τ−1
∏

t=1

∏

j

T
[xi

t,x
j
t+1]

ij

τ
∏

t=1

∏

k

Ak(yt)
[xk

t]}

=
∑

i

[xi
1] log πi +

τ−1
∑

t=1

∑

j

[xi
t, x

j
t+1] log Tij +

τ
∑

t=1

∑

k

[xk
t] log Ak(yt)

where the indicator [xi
t] = 1 if xt = i and 0 otherwise

• Statistics we need from the E-step are:
p(xt|{y}) and p(xt, xt+1|{y}).

• We saw how to get single time marginals p(xt|{y}), but what
about two-frame estimates p(xt, xt+1|{y})?

Two-frame inference

• Need the cross-time statistics for adjacent time steps:

ξij = p(xt = i, xt+1 = j|{y})

• This can be done by rewriting:

p(xt, xt+1|{y}) = p(xt, xt+1, {y})/p({y})

= p(xt,y
t
1)p(xt+1,y

τ
t+1|xt,y

t
1)/L

= p(xt,y
t
1)p(xt+1|xt)p(yt+1|xt+1)p(yτ

t+2|xt+1)/L

= αi(t)TijAj(yt+1)βj(t + 1)/L

= ξij

• This is the expected number of transitions from state i to state j
that begin at time t, given the observations.

• It can be computed with the same α and β recursions.

New Parameters are just
Ratios of Frequency Counts

• Initial state distribution: expected #times in state i at time 1:

π̂i = γi(1)

• Expected #transitions from state i to j which begin at time t:

ξij(t) = αi(t)TijAj(yt+1)βj(t + 1)/L

so the estimated transition probabilities are:

T̂ij =
τ−1
∑

t=1

ξij(t)

/

τ−1
∑

t=1

γi(t)

• The output distributions are the expected number of times we
observe a particular symbol in a particular state:

Âj(y) =
∑

t|yt=y

γj(t)

/

τ
∑

t=1

γj(t)

Viterbi Decoding

• The numbers γj(t) above gave the probability distribution over all
states at any time.

• By choosing the state γ∗(t) with the largest probability at each
time, we can make an “average” state path. This is the path with
the maximum expected number of correct states.

• But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of probability zero!

• To find the single best path, we do Viterbi decoding which is just
Bellman’s dynamic programming algorithm applied to this problem.

• The recursions look the same, except with max instead of
∑

.

• Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

• There is also a modified Baum-Welch training based on the Viterbi
decode. Like K-means instead of mixtures of Gaussians.

Using HMMs for Recognition

• Use many HMMs for recognition by:

1. training one HMM for each class (requires labelled training data)

2. evaluating probability of an unknown sequence under each HMM

3. classifying unknown sequence: HMM with highest likelihood

L1 L2 Lk

• This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)

2. Give some training sequences, estimate model parameters.
(We can find the local maximum of parameter space nearest our
starting point.)

Symbol HMM Example

• Character sequences (discrete outputs)

−
*

9

A B C D E
F GH I J

K L M N O

P Q R ST
U V WX Y

−
*

9

AB C D E

F G H IJ

K L M N O
P Q R S T

U V W X Y

−

*

9

A BCD E

F G H I J

K L MNO

P Q R ST
UVWX Y

−

*

9

AB C D E
F G H I J

K L M N O

P Q R ST
U V W X Y

Mixture HMM Example

• Geyser data (continuous outputs)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

110

y1

y2

State output functions

Regularizing HMMs

• Two problems:

– for high dimensional outputs, lots of parameters in each Aj(y)

– with many states, transition matrix has many2 elements

• First problem: full covariance matrices in high dimensions or
discrete symbol models with many symbols have lots of parameters.
To estimate these accurately requires a lot of training data.
Instead, we often use mixtures of diagonal covariance Gaussians.

• For discrete data, we can use mixtures of base rates.

• We can also tie parameters across states.

Regularizing Transition Matrices

• One way to regularize large transition matrices is to constrain them
to be relatively sparse: instead of being allowed to transition to any

other state, each state has only a few possible successor states.

• For example if each state has at most p possible next states then
the cost of inference is O(pKT) and the number of parameters is
O(pK + KM) which are both linear in the number of states.

•

An extremely effective way to constrain the
transitions is to order the states in the HMM
and allow transitions only to states that come

later in the ordering. Such models are known
as “linear HMMs”, “chain HMMs” or “left-
to-right HMMs”. Transition matrix is upper-
diagonal (usually only has a few bands).

s(t+1)

s(
t)

Profile (String-Edit) HMMs

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• A “profile HMM” or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

• Three kinds of states: match, insert, delete.
mn – use position n in the template to match an observed symbol
in – insert extra symbol(s) observations after template position n
dn – delete (skip) template position n

DP for Profile HMMs

• How do we fill in
the numbers for a
DP grid using a
string-edit HMM?

• Almost the same as
normal except:

– Now the grid is 3
times its normal
height.

– It is possible to
move down
without moving
right if you move
into a deletion
state.

eg: template length=4, test sequence length=5

in
se

rt
io

ns
de

le
tio

ns
m

at
ch

es
Test Sequence Position
y1 y2 y3 y4

(e
m

it
on

 a
rr

iv
al

)

y5

Profile HMM DP Grid

Cx → x′ = − log Tx,x′ − log Ax′(yt) if x′ is match or insert

Cx → x′ = − log Tx,x′ if x′ is a delete state

State x ∈ {mn, in, dn}
has nonzero transition
probabilities only to states
x′ ∈ {mn+1, in, dn+1}.

in
se

rt
io

ns
de

le
tio

ns
m

at
ch

es

Test Sequence Position
y1 y2 y3 y4

(e
m

it
on

 a
rr

iv
al

)

y5

HMM Practicalities

• If you just implement things as I have described them, they will not

work at all. Why? Remember logsum...

• Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

ρt = P(yt|y
t−1
1) α(t) = α̃(t)

t
∏

t′=1

ρt′

(of course you could always use logsum but that’s less efficient)

• Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

• Initialization: mixtures of base rates or mixtures of Gaussians

• Generation of new sequences. Just roll the dice!

• Sampling a single state sequence from the posterior p({x}|{y}).
Harder...but possible. (can you think of how?)

Computational Costs in HMMs

• The number of parameters in the model was O(K2 + KM) for M
output symbols or dimensions.

• Recall the forward-backward algorithm for inference of state
probabilities p(xt|{y}).

• The storage cost of this procedure was O(KT + K2) for K states
and a sequence of length T .

• The time complexity was O(K2T).

st
at

es

timeα β

Profile HMMs have Linear Costs

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• number of states = 3(length template)

• Only insert and match states can generate output symbols.

• Once you visit or skip a match state you can never return to it.

• At most 3 destination states from any state, so Sij very sparse.

• Storage/Time cost linear in #states, not quadratic.

• State variables and observations no longer in sync.
(e.g. y1:m1 ; d2 ; y2:i2 ; y3:i2 ; y4:m3 ; . . .)

Some HMM History

• Markov (’13) and later Shannon (’48,’51) studied Markov chains.

• Baum et. al (BP’66, BE’67, BS’68, BPSW’70, B’72) developed
much of the theory of “probabilistic functions of Markov chains”.

• Viterbi (’67) (now Qualcomm) came up with an efficient optimal
decoder for state inference.

• Applications to speech were pioneered independently by:

– Baker (’75) at CMU (now Dragon)

– Jelinek’s group (’75) at IBM (now Hopkins)

– communications research division of IDA (Ferguson ’74
unpublished)

• Dempster, Laird & Rubin (’77) recognized a general form of the
Baum-Welch algorithm and called it the EM algorithm.

• A landmark open symposium in Princeton (’80) hosted by IDA
reviewed work till then.

Forward-Backward for Profile HMMs

• The equations for the delete states in profile HMMs need to be
modified slightly, since they don’t emit any symbols.

• For delete states k, the forward equations become:

αk(t) =
∑

j

αj(t)Sjk

which should be evaluated after the insert and match state updates.

• For all states, the backward equations become:

βk(t) =
∑

i∈match,ins

Skiβi(t + 1)Ai(yt+1) +
∑

j∈del

Skjβj(t)

which should be evaluated first for delete states k; then for the rest.

• The gamma equations remain the same:

γi(t) = p(xt = i | yT
1) = αi(t)βi(t)/L

• Notice that each summation above contains only three terms,
regardless of the number of states!

Initializing Forward-Backward for Profile HMMs

• The initialization equations for Profile HMMs also need to be fixed
up, to reflect the fact that the model can only begin in states
m1, i1, d1 and can only finish in states mN , iN , dN .

• In particular, πj = 0 if j is not one of m1, i1, d1.

• When initializing αk(1), delete states k have zeros, and all other
states have the product of the transition probabilities through only
delete states up to them, plus the final emission probability.

• When initializing βk(T), the same kind of adjustment must be
made.

HMM Pseudocode

• Forward-backward including scaling tricks

qj(t) = Aj(yt)

α(1) = π. ∗ q(1) ρ(1) =
∑

α(1) α(1) = α(1)/ρ(1)

α(t) = (T ′ ∗ α(t − 1)). ∗ q(t) ρ(t) =
∑

α(t) α(t) = α(t)/ρ(t) [t = 2 : τ]

β(τ) = 1

β(t) = T ∗ (β(t + 1). ∗ q(t + 1)/ρ(t + 1) [t = (τ − 1) : 1]

ξ = 0

ξ = ξ + T. ∗ (α(t) ∗ (β(t + 1). ∗ q(t + 1))′)/ρ(t + 1) [t = 1 : (τ − 1)]

γ = (α. ∗ β)

log P(yτ
1) =

∑

log(ρ(t))

HMM Pseudocode

• Baum-Welch parameter updates

δj = 0 T̂ij = 0 π̂ = 0 Â = 0

for each sequence, run forward backward to get γ and ξ , then

T̂ = T̂ + ξ π̂ = π̂ + γ(1) δ = δ +
∑

t

γ(t)

Âj(y) =
∑

t|yt=y

γj(t) or Â = Â +
∑

t

ytγ(t)

T̂ij = T̂ij/
∑

k

T̂ik π̂ = π̂/
∑

π̂ Âj = Âj/δj

Example Problem on HMM Inference
Consider an HMM with 3 states and a sequence of length 7. As you know, HMM inference can be converted into

path problems on discrete grids and thus made isomorphic to dynamic programming. The rows of the grid correspond
to states and the columns to time steps. Any state sequence is a path through the grid that starts at the leftmost

column and ends in the rightmost column, going through exactly one node per column. The cost of moving from one
node to another corresponds to negative log probability. Such a grid is shown below, with all the costs filled in.

(a) Write an expression for the cost of moving from node (i, t − 1) to node (j, t) in terms of the probabilities Tij of

transitioning from state i to state j and the probabilities Aj(yt) of emitting observation yt from state j (t > 1).

(b) Write an expression for the cost of starting at any node (k, 1) in the leftmost column in terms of the probability
of the initial distribution πk amd the probability of emitting the first symbol y1 from state k.

(c) Find the log probability (negative of the total cost) of the sequence in the grid below.

(d) Find the most likely hidden state sequence (smallest cost) and its cost given the grid below.
Use {A,B,C} to denote the states.

2
3
4

1

1
2

5

3
2

2

2
6

7

8
1

6

4
5

6

1
5

12

10
11

6

3
2

7

7
7

1

2
1

4

2
3

3

3
3

2

5
3

1

6
1

5

4
6

9

2
8

1

2
3

7

2
6

time
1 2 3 4 5 6 7

C

B

A

st
at

es

