
Lecture 5:

Objective Functions & Optimization

Sam Roweis

October 7, 2003

Regression/Classification & Probabilities

•We assume our data are iid from an unknown joint distribution
p(y,x|w) or an unknown conditional p(y|x,w).

•We see some examples (y1,x1)(y2,x2) . . . (yn,xn) and we want to
infer something about the weights.

•Originally we were weak, often just using maximum likelihood.

• Recently, we haven’t been quite so stupid: we’ve been using
maximum penalized likelihood to include regularization effects like
shrinkage, input selection, or smoothing.

Maximum Likelihood

•Maximum likelihood asks the question: for which setting of the
weights is the data we saw most likely?

• To answer this, it assumes that the training data are iid, computes
the log likelihood and forms a function `(w) which depends on the
fixed training set we saw and on the argument w:

`(w) = log p(y1,x1, y2,x2, . . . , yn,xn|w)

= log
∏

b

p(yn,xn|w) since iid

=
∑

n

log p(yn,xn|w) since log
∏

=
∑

log

e.g. Maximizing likelihood is equivalent to minimizing sum squared
error, if the noise model is Gaussian and the datapoints are iid:

`(w) = − 1
2σ2

∑
n(yn −w>xn)2 + const

Bayesian Programme

• Ideally, we would be Bayesian, introduce a prior p(w), and use
Bayes rule to compute p(w|y1,x1, y2,x2, . . . , yn,xn).

• This is the posterior distribution of the parameters given the data.
A true Bayesian would integrate over it to make future predictions:

p(ynew|xnew) =
∫

p(ynew|xnew,w)p(w|Y,X)dw

but often analytically intractable and computationally very difficult

•We can settle for maximizing and using the argmax to make future
predictions: this is called maximum a-posteriori, or MAP.

•Many of the penalized maximum likelihood techniques we used for
regularization are equivalent to MAP with certain parameter priors:

– quadratic weight decay (shrinkage)⇔ Gaussian prior (var=1/2Λ)

– absolute weight decay (lasso) ⇔ Laplace prior (decay = 1/Λ)

– smoothing on multinomial parameters ⇔ Dirichlet prior

– smoothing on covariance matrices ⇔ Wishart prior

Maximum A Posteriori

•MAP asks the question: which setting of the weights is most likely
to be drawn from the prior p(w) and then to generate the data
from the conditional p(X,Y |w) ?

• To answer this, it assumes that the training data are iid, computes
the log posterior and forms a function `(w) which depends on the
fixed training set we saw and on the argument w:

`(w) = log p(y1,x1, y2,x2, . . . , yn,xn|w) + log p(w)

= log
∏

b

p(yn,xn|w) + log p(w) since iid

=
∑

n

log p(yn,xn|w) + log p(w) since log
∏

=
∑

log

(e.g. MAP is equivalent to ridge regression, if the noise model is Gaus-
sian, the weight prior is Gaussian, and the datapoints are iid:

`(w) = − 1
2σ2

∑
n(yn −w>xn)2 + λ

∑
i w

2
i + const

Error Surfaces and Weight Space

•Make a new “error function” E(w) which we want to minimize.

•E(w) can be the negative of the log likelihood or log posterior.

• Consider a fixed training set; think in weight (not input) space.
At each setting of the weights there is some error (given the fixed
training set): this defines an error surface in weight space.

• Learning == descending the error surface.

• Notice: If the data are IID, the error function E is a sum of error
functions En, one per data point.

E(w)

E

w

wj

wi

E(w)

Quadratic Error Surfaces and IID data

• A very common cost function is the quadratic:

E(w) = w>Aw + 2w>b + c

• This comes up as the log probability when using Gaussians, since if
the noise model is Gaussian, each of the En is an upside-down
parabola (called a “quadratic bowl” in higher dimensions).

• Fact: sum of parabolas (quadratics) is another parabola (quadratic)

• So the overall error surface is just a quadratic bowl.

• Fact: it is easy to find the minimum of a quadratic bowl:

E(w) = a + bw + cw2 ⇒ w∗ = −b/2c

E(w) = a + b>w + w>Cw ⇒ w∗ = −
1

2
C−1b

• Convince yourself that for linear regression with Gaussian noise:

C = XX> and b = −2Xy>

Partial Derivatives of Error

•Question: if we wiggle wk and keep everything else the same, does
the error get better or worse?

• Luckily, calculus has an answer to exactly this question: ∂E
∂wk

.

• Plan: use a differentiable cost function E and compute partial

derivatives of each parameter with respect to this error: ∂E
∂wk

• Use the chain rule to compute the derivatives.

• The vector of partial derivatives is called the gradient of the error.
It points in the direction of steepest error descent in weight space.

• Three crucial questions:

– How do we compute the gradient ∇E efficiently?

– Once we have the gradient, how do we minimize the error?

– Where will we end up in weight space?

“Bold Driver” Gradient Descent

•Once we have the gradient of our error function, how do we
minimize the weights? Follow it! But not too fast...

•Algorithm Gradient Descent
w ← GradientDescent(w0,x-train,y-train) {
step=median(abs(w0(:)))/100; errold=Inf; grad=0;

while(step>0)

w = w0 - step*grad;

(err,grad) ← errorGradient(w,x-train,y-train)

if(err>=errold)

step=step/2; grad=gradold;

else

step=step*1.01; errold=err; w0=w; gradold=grad;

end

end

}

• This algorithm only finds a local minimum of the cost.

• This is batch grad. descent, but mini-batch or online may be better.

Convexity, Local Optima

• Unfortunately, many error functions while differentiable are not
convex. Convexity means that the second derivative is always
positive. No linear combination of weights can have greater error
than the linear combination of the original errors.

•When using gradient descent we can get stuck in local minima.
Where we end up depends on where we start.

er
ro

r

parameter space

• Things like linear regression, logistic regression, lasso, all have
convex error functions. Neural networks, HMEs do not.

Curved Error Surfaces

• Notice: the error surface may be curved differently in different
directions. This means that the gradient does not necessarily point
directly at the nearest local minimum.

dE
dW

• The local geometry of curvature is measured by the Hessian matrix

of second derivatives: Hij = ∂2E/∂wiwj.

• Eigenvectors/values of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.
Near a local minimum, the Hessian is positive definite.

•Maximum stepsize is 2
λmax

Rate of convergence depends on (1− 2λmin
λmax

).

Momentum

• If the error surface is a long and narrow valley, grad. descent goes
quickly down the valley walls but very slowly along the valley bottom.

dE
dw

•We can alleviate this by updating our parameters using a
combination of the previous update and the gradient update:

∆wt
j = λ∆wt−1

j + (1− λ) ε ∂E/∂wj(w
t)

• Usually, λ is quite high, about 0.95.

•When we have to retract a step, we set ∆wj to zero.

• Physically, this is like giving momentum to our weights.

Line Search

• Rather than take a fixed step in the direction of the gradient or the
momentum-smoothed gradient, it is possible to
do a search along that direction to find the minimum of the function.

w1
w2

w3

E(w)

search direction

• Usually the search is a bisection, which bounds the nearest local
minimum along the line between any two points w1 and w2 such
that there is a third point w3 with E(w3) < E(w1) and
E(w3) < E(w2).

Local Quadratic Approximation

• By taking a Taylor series of the error function around any point in
weight space, we can make a local quadratic approximation based
on the value, slope and curvature:

E(w−w0) ≈ E(w0)+(w−w0)
>∂E

∂w
+(w−w0)

>H(w0)

2
(w−w0)

H is the Hessian matrix of second derivatives: Hij = ∂2E/∂wiwj

er
ro

r

parameter space

• Newton’s method: jump to the minimum of this quadratic, repeat.

w∗ = w −H−1(w)
∂E

∂w

Second Order Methods

• Newton’s method is an example of a second order optimization
method because it makes use of the curvature or Hessian matrix.

• Second order methods often converge much more quickly, but it
can be very expensive to calculate and store the Hessian matrix.

• In general, most people prefer clever first order methods which need
only the value of the error function and its gradient with respect to
the parameters. Often the sequence of gradients (first order
derivatives) can be used to approximate the second order curvature.
(This may even be better than the true Hessian, because we can
constrain our approximation to be always positive definite.)

• Point of Possible Confusion: Newton’s method is often described as
a method of multidimensional root finding, which is a much harder
problem: xt+1 = xt − f (xt)/f

′(xt). In that case, it is trying to set
the gradient vector f (x) = ∇E(x) to be the zero vector.

Newton and Quasi-Newton Methods

• Broyden-Fletcher-Goldfarb-Shanno (BFGS); Conjugate-Gradients
(CG); Davidon-Fletcher-Powell (DVP); Levenberg-Marquardt (LM)

• All approximate the Hessian using recent function and gradient
evaluations (e.g by averaging outer products of gradient vectors,
but tracking the “twist” in the gradient; by projecting out previous
gradient directions...).

• Then they use this approximate gradient to come up with a new
search direction in which they do a combination of fixed-step,
analytic-step and line-search minimizations.

• Very complex area (see reading) but we will go through in deatail
only the CG method, although my current favourite optimizer is the
limited-memory BFGS, which is like a multidimensional version of
secant (actually false-position) optimization.

Conjugate Gradients

•Observation: at the end of a line search, the new gradient is
(almost) orthogonal to the direction we just searched in.

• So if we choose the next search direction to be the new gradient,
we will always be searching successively orthogonal directions and
things will be very slow.

• Instead, select a new direction so that, to first order, as we move in
the new direction the gradient parallel to the old direction stays
zero. This involves blending the current gradient with the previous
search direction: d(t + 1) = −g(t + 1) + β(t)d(t).

d(t−1)

d(t)

d(t+1)

E
g d(t)=0T

d(t)

d(t+1)

w(t)

w(t+1)

Conjugate Gradients

• To first order, all three expressions below satisfy our constraint that
along the new search direction g>d(t) = 0:

d(t + 1) = −g(t + 1) + β(t)d(t)

β(t) =
g>(t + 1)(g(t + 1)− g(t))

d>(t)(g(t + 1)− g(t)
Hestenes-Stiefel

β(t) =
g>(t + 1)(g(t + 1)− g(t))

g>(t)g(t)
Polak-Ribiere

β(t) =
g>(t + 1)g(t + 1)

g>(t)g(t)
Fletcher-Reeves

Constrained Optimization

• Sometimes we want to optimize with some constraints on the
parameters.
e.g. variances are always positive
e.g. priors are non-negative and sum to unity (live on the simplex)

• There are two ways to get around this.
First, we can reparametrize so that the new parameters are
unconstrained.
e.g. use log(variances) or use softmax inputs for priors.

• The other way is to explicitly incorporate the constraints into our
cost function.

Lagrange Multipliers

• Imagine that our parameters have to live inside the constraint
surface c(w) = 0.

• To optimize our function E(w), we want to look at the component
of the gradient that lies within the surface, i.e. with zero dot
product to the normal of the constraint. At the constrained
optimum, this gradient component is zero, in other words the
gradient of the function is parallel to the gradient of the constraint
surface.

grad(c)

grad(E)
grad(E)||

x1

x2
c(x)=0

Lagrange Multipliers

• At the constrained optimum, the gradient of the function is parallel

to the gradient of the constraint surface:

∂E/∂w = λ∂c/∂w

the constant of proportionality is called the Lagrange multiplier.
Its value can be found by forcing c(w) = 0.

• In general, the Lagrangian function

L(w, λ) = E(w) + λ>c(w)

∂L/∂w = ∂E/∂w + λ>∂c/∂w

∂L/∂λ = c(w)

has the property that when its gradient is zero, the constraints are
satisfied and there is no gradient within the constraint surface.

Quadratic Cost with Linear Constraints

• Example: find the maximum over x of the quadratic form:

E(x) = b>x−
1

2
x>A−1x

subject to the K conditions ck(x) = 0.

• Answer: use Lagrange multipliers:

L(x, λ) = E(x) + λ>c(x)

Now set ∂L/∂x = 0 and ∂L/∂λ = 0. Result:

x∗ = Ab + ACλ

λ = −4(C>AC)C>Ab

where the kth column of C is ∂ck(x)/∂x

Linear Programming

• LP optimizes a linear cost function subject to linear constraints:

E(w) = w>a + b

Gw < g

Cw = c

• Can always be transformed to standard form using slack variables:

E(w) = w>a

w > 0

Cw = c

Quadratic Programming

•QP optimizes a quadratic cost function subject to linear constraints:

E(w) = w>Aw + 2w>b

Gw < g

Cw = c

Bound Optimization

• A completely different way to do optimization is to come up with
consecutive upper (lower) bounds on your objective function and
optimize those bounds.

• Assume we can find functions Q(w, z) and z(w) such that:

Q(w, z(w)) = E(w) ≤ Q(w, z∗) for any w and any z∗ 6= z(w)

arg min
w

Q(w, z(w∗)) can be found easily for any w∗

• Now iterate: wt+1 = arg minw Q(w, z(wt))

• Guarantee:

E(wt+1) = Q(wt+1, z(wt+1))

≤ Q(wt+1, z(wt))

≤ Q(wt, z(wt)) = E(wt)

