Maximum Likelihood

Lecture 5:

Objective Functions \& Optimization

Sam Roweis

October 7, 2003

- Maximum likelihood asks the question: for which setting of the weights is the data we saw most likely?
- To answer this, it assumes that the training data are iid, computes the \log likelihood and forms a function $\ell(\mathbf{w})$ which depends on the fixed training set we saw and on the argument \mathbf{w} :

$$
\begin{array}{rlrl}
\ell(\mathbf{w}) & =\log p\left(y_{1}, \mathbf{x}_{1}, y_{2}, \mathbf{x}_{2}, \ldots, y_{n}, \mathbf{x}_{n} \mid \mathbf{w}\right) \\
& =\log \prod_{b} p\left(y_{n}, \mathbf{x}_{n} \mid \mathbf{w}\right) & & \text { since iid } \\
& =\sum_{n} \log p\left(y_{n}, \mathbf{x}_{n} \mid \mathbf{w}\right) & & \text { since } \log \prod=\sum \log
\end{array}
$$

e.g. Maximizing likelihood is equivalent to minimizing sum squared error, if the noise model is Gaussian and the datapoints are iid:

$$
\ell(\mathbf{w})=-\frac{1}{2 \sigma^{2}} \sum_{n}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}+\text { const }
$$

Bayesian Programme

- Ideally, we would be Bayesian, introduce a prior $p(\mathbf{w})$, and use Bayes rule to compute $p\left(\mathbf{w} \mid y_{1}, \mathbf{x}_{1}, y_{2}, \mathbf{x}_{2}, \ldots, y_{n}, \mathbf{x}_{n}\right)$.
- This is the posterior distribution of the parameters given the data. A true Bayesian would integrate over it to make future predictions:

$$
p\left(y^{\mathrm{new}} \mid x^{\mathrm{new}}\right)=\int p\left(y^{\mathrm{new}} \mid x^{\mathrm{new}}, \mathbf{w}\right) p(\mathbf{w} \mid Y, X) d \mathbf{w}
$$

but often analytically intractable and computationally very difficult

- We can settle for maximizing and using the argmax to make future predictions: this is called maximum a-posteriori, or MAP.
- Many of the penalized maximum likelihood techniques we used for regularization are equivalent to MAP with certain parameter priors:
- quadratic weight decay (shrinkage) \Leftrightarrow Gaussian prior (var $=1 / 2 \Lambda$)
-absolute weight decay (lasso) \Leftrightarrow Laplace prior (decay $=1 / \Lambda$)
-smoothing on multinomial parameters \Leftrightarrow Dirichlet prior
- smoothing on covariance matrices \Leftrightarrow Wishart prior

Maximum A Posteriori

- MAP asks the question: which setting of the weights is most likely to be drawn from the prior $p(\mathbf{w})$ and then to generate the data from the conditional $p(X, Y \mid \mathbf{w})$?
- To answer this, it assumes that the training data are iid, computes the log posterior and forms a function $\ell(\mathbf{w})$ which depends on the fixed training set we saw and on the argument \mathbf{w} :

$$
\begin{array}{rlrl}
\ell(\mathbf{w}) & =\log p\left(y_{1}, \mathbf{x}_{1}, y_{2}, \mathbf{x}_{2}, \ldots, y_{n}, \mathbf{x}_{n} \mid \mathbf{w}\right)+\log p(\mathbf{w}) \\
& =\log \prod_{b} p\left(y_{n}, \mathbf{x}_{n} \mid \mathbf{w}\right)+\log p(\mathbf{w}) & & \text { since iid } \\
& =\sum_{n} \log p\left(y_{n}, \mathbf{x}_{n} \mid \mathbf{w}\right)+\log p(\mathbf{w}) & & \text { since } \log \prod=\sum \log
\end{array}
$$

(e.g. MAP is equivalent to ridge regression, if the noise model is Gaussian, the weight prior is Gaussian, and the datapoints are iid:

$$
\ell(\mathbf{w})=-\frac{1}{2 \sigma^{2}} \sum_{n}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}+\lambda \sum_{i} w_{i}^{2}+\text { const }
$$

Quadratic Error Surfaces and IID data

- A very common cost function is the quadratic:

$$
E(\mathbf{w})=\mathbf{w}^{\top} \mathbf{A} \mathbf{w}+2 \mathbf{w}^{\top} \mathbf{b}+c
$$

- This comes up as the log probability when using Gaussians, since if the noise model is Gaussian, each of the E_{n} is an upside-down parabola (called a "quadratic bowl" in higher dimensions).
- Fact: sum of parabolas (quadratics) is another parabola (quadratic)
- So the overall error surface is just a quadratic bowl.
- Fact: it is easy to find the minimum of a quadratic bowl:

$$
\begin{array}{lll}
E(w)=a+b w+c w^{2} & \Rightarrow & w^{*}=-b / 2 c \\
E(\mathbf{w})=a+\mathbf{b}^{\top} \mathbf{w}+\mathbf{w}^{\top} \mathbf{C w} & \Rightarrow & \mathbf{w}^{*}=-\frac{1}{2} \mathbf{C}^{-1} \mathbf{b}
\end{array}
$$

- Convince yourself that for linear regression with Gaussian noise:

$$
\mathbf{C}=\mathbf{X} \mathbf{X}^{\top} \quad \text { and } \quad \mathbf{b}=-2 \mathbf{X} \mathbf{y}^{\top}
$$

Partial Derivatives of Error

- Make a new "error function" $E(\mathbf{w})$ which we want to minimize.
- $E(\mathbf{w})$ can be the negative of the \log likelihood or \log posterior.
- Consider a fixed training set; think in weight (not input) space. At each setting of the weights there is some error (given the fixed training set): this defines an error surface in weight space.
- Learning $==$ descending the error surface.
- Notice: If the data are IID, the error function E is a sum of error functions E_{n}, one per data point.

"Bold Driver" Gradient Descent
- Once we have the gradient of our error function, how do we minimize the weights? Follow it! But not too fast...

- Algorithm Gradient Descent

$\mathrm{w} \leftarrow$ GradientDescent(w0, x-train, y-train) \{
step=median(abs(wO(:)))/100; errold=Inf; grad=0; while (step>0)
w = w0 - step*grad;
(err, grad) \leftarrow errorGradient (w , x-train, y-train)
if (err>=errold)
step=step/2; grad=gradold;
else
step=step*1.01; errold=err; w0=w; gradold=grad; end end

- This algorithm only finds a local minimum of the cost.
- This is batch grad. descent, but mini-batch or online may be better.

Convexity, Local Optima

- Unfortunately, many error functions while differentiable are not convex. Convexity means that the second derivative is always positive. No linear combination of weights can have greater error than the linear combination of the original errors.
- When using gradient descent we can get stuck in local minima. Where we end up depends on where we start.

- Things like linear regression, logistic regression, lasso, all have convex error functions. Neural networks, HMEs do not.

Curved Error Surfaces

- Notice: the error surface may be curved differently in different directions. This means that the gradient does not necessarily point directly at the nearest local minimum

- The local geometry of curvature is measured by the Hessian matrix of second derivatives: $H_{i j}=\partial^{2} E / \partial w_{i} w_{j}$.
- Eigenvectors/values of the Hessian describe the directions of principal curvature and the amount of curvature in each direction. Near a local minimum, the Hessian is positive definite.
- Maximum stepsize is $\frac{2}{\lambda_{\max }}$

Rate of convergence depends on $\left(1-2 \frac{\lambda_{\min }}{\lambda_{\max }}\right)$.

Momentum

- If the error surface is a long and narrow valley, grad. descent goes quickly down the valley walls but very slowly along the valley bottom.

- We can alleviate this by updating our parameters using a combination of the previous update and the gradient update:

$$
\Delta w_{j}^{t}=\lambda \Delta w_{j}^{t-1}+(1-\lambda) \epsilon \partial E / \partial w_{j}\left(\mathbf{w}^{t}\right)
$$

- Usually, λ is quite high, about 0.95 .
- When we have to retract a step, we set Δw_{j} to zero.
- Physically, this is like giving momentum to our weights.
- Rather than take a fixed step in the direction of the gradient or the momentum-smoothed gradient, it is possible to
do a search along that direction to find the minimum of the function.

search direction
- Usually the search is a bisection, which bounds the nearest local minimum along the line between any two points \mathbf{w}_{1} and \mathbf{w}_{2} such that there is a third point \mathbf{w}_{3} with $E\left(\mathbf{w}_{3}\right)<E\left(\mathbf{w}_{1}\right)$ and $E\left(\mathbf{w}_{3}\right)<E\left(\mathbf{w}_{2}\right)$.
- Newton's method is an example of a second order optimization method because it makes use of the curvature or Hessian matrix
- Second order methods often converge much more quickly, but it can be very expensive to calculate and store the Hessian matrix.
- In general, most people prefer clever first order methods which need only the value of the error function and its gradient with respect to the parameters. Often the sequence of gradients (first order derivatives) can be used to approximate the second order curvature. (This may even be better than the true Hessian, because we can constrain our approximation to be always positive definite.)
- Point of Possible Confusion: Newton's method is often described as a method of multidimensional root finding, which is a much harder problem: $x_{t+1}=x_{t}-f\left(x_{t}\right) / f^{\prime}\left(x_{t}\right)$. In that case, it is trying to set the gradient vector $f(x)=\nabla E(x)$ to be the zero vector.
- Broyden-Fletcher-Goldfarb-Shanno (BFGS); Conjugate-Gradients (CG); Davidon-Fletcher-Powell (DVP); Levenberg-Marquardt (LM)
- All approximate the Hessian using recent function and gradient evaluations (e.g by averaging outer products of gradient vectors, but tracking the "twist" in the gradient; by projecting out previous gradient directions...).
- Then they use this approximate gradient to come up with a new search direction in which they do a combination of fixed-step, analytic-step and line-search minimizations.
- Very complex area (see reading) but we will go through in deatail only the CG method, although my current favourite optimizer is the limited-memory BFGS, which is like a multidimensional version of secant (actually false-position) optimization.
- Observation: at the end of a line search, the new gradient is (almost) orthogonal to the direction we just searched in.
- So if we choose the next search direction to be the new gradient, we will always be searching successively orthogonal directions and things will be very slow.
- Instead, select a new direction so that, to first order, as we move in the new direction the gradient parallel to the old direction stays zero. This involves blending the current gradient with the previous search direction: $\mathbf{d}(t+1)=-\mathbf{g}(t+1)+\beta(t) \mathbf{d}(t)$.

- Sometimes we want to optimize with some constraints on the parameters.
e.g. variances are always positive
e.g. priors are non-negative and sum to unity (live on the simplex)
- There are two ways to get around this.

First, we can reparametrize so that the new parameters are unconstrained.
e.g. use \log (variances) or use softmax inputs for priors.

- The other way is to explicitly incorporate the constraints into our cost function.

Conjugate Gradients

- To first order, all three expressions below satisfy our constraint that along the new search direction $\mathbf{g}^{\top} \mathbf{d}(t)=0$:

$$
\begin{array}{rlrl}
\mathbf{d}(t+1) & =-\mathbf{g}(t+1)+\beta(t) \mathbf{d}(t) & & \\
\beta(t) & =\frac{\mathbf{g}^{\top}(t+1)(\mathbf{g}(t+1)-\mathbf{g}(t))}{\mathbf{d}^{\top}(t)(\mathbf{g}(t+1)-\mathbf{g}(t)} & & \text { Hestenes-Stiefel } \\
\beta(t) & =\frac{\mathbf{g}^{\top}(t+1)(\mathbf{g}(t+1)-\mathbf{g}(t))}{\mathbf{g}^{\top}(t) \mathbf{g}(t)} & & \text { Polak-Ribiere } \\
\beta(t) & =\frac{\mathbf{g}^{\top}(t+1) \mathbf{g}(t+1)}{\mathbf{g}^{\top}(t) \mathbf{g}(t)} & \text { Fletcher-Reeves }
\end{array}
$$

Lagrange Multipliers

- Imagine that our parameters have to live inside the constraint surface $c(\mathbf{w})=0$.
- To optimize our function $E(\mathbf{w})$, we want to look at the component of the gradient that lies within the surface, i.e. with zero dot product to the normal of the constraint. At the constrained optimum, this gradient component is zero, in other words the gradient of the function is parallel to the gradient of the constraint surface.

- At the constrained optimum, the gradient of the function is parallel to the gradient of the constraint surface:

$$
\partial E / \partial \mathbf{w}=\lambda \partial c / \partial \mathbf{w}
$$

the constant of proportionality is called the Lagrange multiplier.
Its value can be found by forcing $c(\mathbf{w})=0$.

- In general, the Lagrangian function

$$
\begin{aligned}
L(\mathbf{w}, \lambda) & =E(\mathbf{w})+\lambda^{\top} \mathbf{c}(\mathbf{w}) \\
\partial L / \partial \mathbf{w} & =\partial E / \partial \mathbf{w}+\lambda^{\top} \partial \mathbf{c} / \partial \mathbf{w} \\
\partial L / \partial \lambda & =\mathbf{c}(\mathbf{w})
\end{aligned}
$$

has the property that when its gradient is zero, the constraints are satisfied and there is no gradient within the constraint surface.

- LP optimizes a linear cost function subject to linear constraints:

$$
\begin{aligned}
E(\mathbf{w}) & =\mathbf{w}^{\top} \mathbf{a}+\mathbf{b} \\
\mathbf{G w} & <\mathbf{g} \\
\mathbf{C w} & =\mathbf{c}
\end{aligned}
$$

- Can always be transformed to standard form using slack variables:

$$
\begin{aligned}
E(\mathbf{w}) & =\mathbf{w}^{\top} \mathbf{a} \\
\mathbf{w} & >0 \\
\mathbf{C w} & =\mathbf{c}
\end{aligned}
$$

Quadratic Cost with Linear Constraints

- Example: find the maximum over \mathbf{x} of the quadratic form:

$$
E(\mathbf{x})=\mathbf{b}^{\top} \mathbf{x}-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}
$$

subject to the K conditions $c_{k}(\mathbf{x})=0$.

- Answer: use Lagrange multipliers:

$$
L(\mathbf{x}, \lambda)=E(\mathbf{x})+\lambda^{\top} \mathbf{c}(\mathbf{x})
$$

Now set $\partial L / \partial \mathbf{x}=0$ and $\partial L / \partial \lambda=0$. Result:

$$
\begin{aligned}
\mathbf{x}^{*} & =\mathbf{A} \mathbf{b}+\mathbf{A C} \lambda \\
\lambda & =-4\left(\mathbf{C}^{\top} \mathbf{A C}\right) \mathbf{C}^{\top} \mathbf{A} \mathbf{b}
\end{aligned}
$$

where the k th column of \mathbf{C} is $\partial c_{k}(\mathbf{x}) / \partial \mathbf{x}$

Quadratic Programming

- QP optimizes a quadratic cost function subject to linear constraints:

$$
\begin{aligned}
E(\mathbf{w}) & =\mathbf{w}^{\top} \mathbf{A} \mathbf{w}+2 \mathbf{w}^{\top} \mathbf{b} \\
\mathbf{G} \mathbf{w} & <\mathbf{g} \\
\mathbf{C w} & =\mathbf{c}
\end{aligned}
$$

- A completely different way to do optimization is to come up with consecutive upper (lower) bounds on your objective function and optimize those bounds.
- Assume we can find functions $Q(\mathbf{w}, \mathbf{z})$ and $\mathbf{z}(\mathbf{w})$ such that:
$Q(\mathbf{w}, \mathbf{z}(\mathbf{w}))=E(\mathbf{w}) \leq Q\left(\mathbf{w}, \mathbf{z}^{*}\right)$ for any \mathbf{w} and any $\mathbf{z}^{*} \neq \mathbf{z}(\mathbf{w})$
$\arg \min _{\mathbf{w}} Q\left(\mathbf{w}, \mathbf{z}\left(\mathbf{w}^{*}\right)\right)$ can be found easily for any \mathbf{w}^{*} w
- Now iterate: $\mathbf{w}^{t+1}=\arg \min _{\mathbf{w}} Q\left(\mathbf{w}, \mathbf{z}\left(\mathbf{w}^{t}\right)\right)$
- Guarantee:

$$
\begin{aligned}
E\left(\mathbf{w}^{t+1}\right) & =Q\left(\mathbf{w}^{t+1}, \mathbf{z}\left(\mathbf{w}^{t+1}\right)\right) \\
& \leq Q\left(\mathbf{w}^{t+1}, \mathbf{z}\left(\mathbf{w}^{t}\right)\right) \\
& \leq Q\left(\mathbf{w}^{t}, \mathbf{z}\left(\mathbf{w}^{t}\right)\right)=E\left(\mathbf{w}^{t}\right)
\end{aligned}
$$

