Constant Model

Lecture 4:

Regression I

Sam Roweis

September 30, 2003

- Constant model says $y=a$, independent of \mathbf{x}.
(What were the constant models in classification?)
- Q: What should we use for a ?

The mean? The median? The mode (for quantized data)?

- A: Depends on your error function (noise model).
- For squared error, the mean is best:

$$
\begin{aligned}
e & =\sum_{n=1}^{N}\left(y_{n}-a\right)^{2} \\
\frac{d e}{d a} & =2 \sum_{n}\left(y_{n}-a\right) \\
a^{*} & =\frac{1}{N} \sum_{n} y_{n}
\end{aligned}
$$

- Multiple inputs \mathbf{x}, mixed cts. and discrete.
- Continuous output(s) y. (Consider each separately.)
- Goal: predict output on future unseen inputs.
- Still conditional density estimation: $p(\mathbf{y} \mid \mathbf{x})$
(c.f. classification)
- For now, consider continuous inputs and a single output...

$$
\begin{aligned}
e & =\sum_{n=1}^{N}\left|y_{n}-a\right| \\
\frac{d e}{d a} & =\sum_{n} \operatorname{sign}\left[a-y_{n}\right] \\
& =\left(\# y_{n} \operatorname{smaller} \text { than } \mathrm{a}\right)-\left(\# y_{n} \text { bigger than a }\right) \\
a^{*} & =\text { median }\left[y_{1} \ldots y_{N}\right]
\end{aligned}
$$

-What if there are an even number of datapoints?
Or exact duplicates?
Then any value between the middle two gives the same error.

- Even for constant model life is not so simple...

Linear Model

- Linear model:

$$
y=\sum w_{i} x_{i}+w_{0}=\mathbf{w}^{\top} \mathbf{x}+w_{0}=\mathbf{w}^{\top}
$$

- Geometry: a line or hyperplane.
$y=A x$
The bias term w_{0} offsets the line
(hyperplane) from the origin.
Think of vertical springs
connecting y_{n} to line $\mathbf{w}^{\top} \mathbf{x}$.
Goal: minimze energy.
- Usually augment \mathbf{x} with constant and absorb bias into \mathbf{w}.
- Q: What's the best w?
- A: Now you know, it depends on your error function!

Probabilistic Models

- What probabilistic model corresponds to squared error? Gaussian:

$$
\begin{aligned}
p(y \mid \mathbf{x}, \mathbf{w}) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(y-\mathbf{w}^{\top} \mathbf{x}\right)^{2}} \\
\log p(y \mid \mathbf{x}, \mathbf{w}) & =-\frac{1}{2}\left(y-\mathbf{w}^{\top} \mathbf{x}\right)^{2}+\mathrm{const} \\
\log p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) & =\sum_{n} \log p\left(y_{n} \mid \mathbf{x}_{n}, \mathbf{w}\right) \quad \text { for iid data }
\end{aligned}
$$

- So minimzing squared error \equiv maximum Gaussian noise likelihood
- What probabilistic model corresponds to absolute error?

Laplacian:

$$
\begin{aligned}
p(y \mid \mathbf{x}, \mathbf{w}) & =a e^{-a\left|y-\mathbf{w}^{\top} \mathbf{x}\right|} \\
\log p(y \mid \mathbf{x}, \mathbf{w}) & =-a\left|y-\mathbf{w}^{\top} \mathbf{x}\right|+\mathrm{const}
\end{aligned}
$$

- Can we estimate the noise level? Yes. An unbiased estimate is:

$$
\sigma^{2} \approx \frac{1}{N-d-1} \sum_{n}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}\right)^{2}
$$

- What about the variance of parameters?

Yes, also:

$$
\operatorname{var}[\mathbf{w}]=\left(\mathbf{X X}^{\top}\right)^{-1} \sigma^{2}
$$

- This allows us to put some crude error bars on our predictions:
$p(\hat{y} \mid \mathbf{x})$ is Gaussian with

$$
\begin{aligned}
& \text { mean }=\mathbf{w}^{\top} \mathbf{x} \\
& \text { variance }=\mathbf{w}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{w}+\sigma^{2}
\end{aligned}
$$

Absolute Error

- What if we use absolute error with the linear model? What's the equivalent of the median estimator?

$$
\min _{\mathbf{w}} \sum_{n}\left|y_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right|
$$

- We need to solve a linear programming problem:

$$
\begin{aligned}
& \min \sum_{n} t_{n} \\
& \text { subject to } \quad-t_{n} \leq y_{n}-\mathbf{w}^{\top} \mathbf{x}_{n} \leq t_{n}
\end{aligned}
$$

Multiple Outputs

- With multiple outputs, we can just treat each one separately.
- Amazingly, this is true even if the output noise is correlated.
- However, if the output noises are correlated and the noise changes from case to case, then the solutions are coupled.
- What? You thought the linear model was simple enough that we don't need to regularlize it? Everything needs regularization!
- Example: you have fewer training cases than input dimensions. Now $\mathbf{X X ~}^{\top}$ will not be invertible.
- Example: certain input dimensions are useless (on average) at predicting the output. But because of noise or small samples, you can always reduce the training error a tiny bit by putting huge weights on these dimensions. At test time you get killed.
- Two common solutions:
- input subset selection
- parameter shrinkage
- Use only a few x_{i} as inputs, discard the rest.

Advantages: introduces inductive bias, produces small models.
Disadvantage: high variability because of binary choices.

- Forward stepwise selection: start with constant and iteratively add the single x_{i} which most decreases error.
- Backward stepwise selection: start with constant and iteratively add the single x_{i} which most decreases error.
- Leaps-and-Bounds: Furnival and Wilson (74) came up with a very clever branch-and-bound trick for efficiently trying all possible subsets. Works for up to ≈ 40 variables.
- Choose subset size with cross validation or F-statistic tests.
- Idea: pull ("shrink") estimated parameters towards some fixed values that do not depend on the data. (Whoa....)
- Usually we shrink towards zero.
- Thus: penalize coefficients based on their size.
- For a penalty which is the sum of the squares of the weights, this is known as "weight decay" or "ridge regression":

$$
\begin{aligned}
y & =\mathbf{w}^{\top} \mathbf{x} \\
e & =\sum_{n}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}\right)^{2}+\lambda \sum_{i} w_{i}^{2} \\
\mathbf{w}^{*} & =\left(\mathbf{X} \mathbf{X}^{\top}+\lambda I\right)^{-1} \mathbf{X} \mathbf{y}^{\top}
\end{aligned}
$$

where I is the identity matrix.

- Shrinkage has less variance but doesn't give small models.

Can we get the best of both worlds?

- Lasso: squared error with absolute weight penalty.

$$
e=\sum_{n}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}\right)^{2}+\lambda \sum_{i}\left|w_{i}\right|
$$

- Requires quadratic programming to solve, but still unique optimum.
- Cool thing happens: may coefficients go exactly to zero.
- Same trick as when we were training Gaussian classifiers.
- Set λ with cross-validation.
- There is a trick which lets you compute the leave-one-out error very efficiently without refitting N times.
- Warning: ridge regression is not invariant to input rescaling.

Often we want to "whiten/sphere" inputs first (i.e. rescale them so their sample covariance is a multiple of the identity matrix).

- We can augment the inputs, not just with a constant to get a bias term, but with lots of other things.
- If we decide beforehand on how to augment the input, this is still linear regression:

$$
y=\sum_{j} w_{j} h_{j}(\mathbf{x})
$$

- For linear regression, just use $h_{0}=1, h_{j}=x_{j}$.
- Optimal weights are still easy to find:

$$
\begin{aligned}
e & =\sum_{n}\left(y_{n}-\mathbf{w}^{\top} \mathbf{h}(\mathbf{x})\right)^{2} \\
\mathbf{w}^{*} & =\left(\mathbf{H H}^{\top}\right)^{-1} \mathbf{H} \mathbf{y}^{\top}
\end{aligned}
$$

where $\mathbf{h}(\mathbf{x})$ is a vector of basis function outputs and \mathbf{H} is a matrix with columns $\mathbf{h}\left(\mathbf{x}_{n}\right)$.

- You can construct a special basis set that gives piecewise constant functions between pre-specified split points ("knots") a_{i} :
$h_{1}=\left(x-a_{1}\right)_{+} \quad h_{2}=\left(x-a_{2}\right)_{+} \ldots h_{k}=\left(x-a_{k}\right)_{+} \quad h_{k+1}=x \quad h_{k+2}=1$ where $\left(x-a_{i}\right)_{+}$is the positive part of $\left(x-a_{i}\right)$.
- To enforce continuity up to the $(r-1)^{s t}$ derivative, use $h_{1}=\left(x-a_{1}\right)_{+}^{r} \ldots h_{k}=\left(x-a_{k}\right)_{+}^{r} \quad h_{k+1}=x^{r} \ldots h_{k+r+1}=1$
- Most common: cubic splines, corresponding to $r=3$.
- Can also enforce linearity beyond edges: natural cubic spline.

Radial Basis Functions

- One way to generate a nice automatic basis is to place a dictionary element on each input datapoint, whose value depends on the distance of the input from the point it is on top of:

$$
h_{n}(\mathbf{x})=\exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}\right]
$$

- Tricky part is setting σ^{2}.

- Another generalized linear model, this time with the basis set:

$$
h_{j}=g\left(\sum_{i} w_{i j} x_{i}\right)
$$

with $g()$ a "squashing" function with limited outputs, e.g.

$$
g(z)=\frac{1}{1+e^{-z}} \quad g(z)=\tanh (z)
$$

- The outputs h_{j} are known as the "hidden layer".

- Piecewise constant $1 D$ splines with knots at each data point value in each dimension. Also the "reflected pairs".

$$
h_{n i}(\mathbf{x})=\left(x_{i}-x_{n i}\right)_{+} \quad h_{2 n i}(\mathbf{x})=\left(x_{n i}-x_{i}\right)_{+}
$$

- Now use forward stepwise regression, chosing from these basic elements and any product between them and an existing dictionary element.
- Then do backwards deletion.
- Another Stanford masterpiece. (What's in the water in Palo Alto?)

Regularization: Learning the basis

- In all the examples above, the basis functions were fixed.
- Ideally, we'd like to adjust the basis set also.
E.g. where are the knots for splines, the centres for RBF's, what are the input-to-hidden weights for neural networks?
- Three strategies: shrinkage, subset, adaptive.
- Shrinkage: of course, we can also do ridge regression on these generalized basis sets, by penalizing the coefficients. For splines, this technique gives smoothing splines.
- We can also start with a huge dictionary and try to pick a few elements. This is subset selection from a broader choice set.
- Lastly, we can have a fixed number of adaptive elements. Next lecture we can see how to do this, for certain error functions, using gradient descent. But the solutions are no longer optimal.

Things I won't cover

- Regression trees (very similar to MARS but worse).
- Partial Least Squares
- Empirical Bayes (ML-II)

Automatic Relevance Determination (ARD)

- Canonical Correlation Analysis

