
Lecture 4:

Regression I

Sam Roweis

September 30, 2003

Reminder: Regression

• Multiple inputs x, mixed cts. and discrete.

• Continuous output(s) y. (Consider each separately.)

• Goal: predict output on future unseen inputs.

• Still conditional density estimation: p(y|x) (c.f. classification)

• For now, consider continuous inputs and a single output...

x

y

x

x

x
x

x

x

x

x

x
x x

x

xx
x

x

x

x
x

x
x

x

x

Constant Model

• Constant model says y = a, independent of x.
(What were the constant models in classification?)

• Q: What should we use for a?
The mean? The median? The mode (for quantized data)?

• A: Depends on your error function (noise model).

• For squared error, the mean is best:

e =

N
∑

n=1

(yn − a)2

de

da
= 2

∑

n

(yn − a)

a∗ =
1

N

∑

n

yn

Absolute Error

• For abs error, we get the median:

e =

N
∑

n=1

|yn − a|

de

da
=

∑

n

sign[a − yn]

= (#ynsmaller than a) − (#ynbigger than a)

a∗ = median[y1 . . . yN]

• What if there are an even number of datapoints?
Or exact duplicates?
Then any value between the middle two gives the same error.

• Even for constant model life is not so simple...

Linear Model

• Linear model:

y =
∑

wixi + w0 = w>x + w0 = w>x̃

• Geometry: a line or hyperplane.
The bias term w0 offsets the line
(hyperplane) from the origin.
Think of vertical springs
connecting yn to line w>x.
Goal: minimze energy.

x

y

y=Ax

• Usually augment x with constant and absorb bias into w.

• Q: What’s the best w?

• A: Now you know, it depends on your error function!

Linear Regression

• For squared error, the problem is linear regression, or ordinary least

squares, and we can get a direct solution:

y = w>x

e =
∑

n

(yn − w>xn)2

w∗ = (XX>)−1Xy>

•X is matrix of inputs (one per column); y is output row vector.

• This is one of the most famous equations in all of linear algebra:
the discrete Weiner filter.

• It says: take the correlation between inputs and outputs, but don’t
be fooled by large input-input correlations.

• Constant model corresponds to w0 = a, wi = 0.

• Predicted values are ŷn = yX>(XX>)−1xn.

Probabilistic Models

• What probabilistic model corresponds to squared error? Gaussian:

p(y|x,w) =
1√

2πσ2
e
− 1

2σ2(y−w>x)2

log p(y|x,w) = −1

2
(y − w>x)2 + const

log p(y|X,w) =
∑

n

log p(yn|xn,w) for iid data

• So minimzing squared error ≡ maximum Gaussian noise likelihood

• What probabilistic model corresponds to absolute error?
Laplacian:

p(y|x,w) = ae−a|y−w>x|

log p(y|x,w) = −a|y −w>x| + const

Ordinary Least Squares

• Can we estimate the noise level? Yes. An unbiased estimate is:

σ2 ≈ 1

N − d − 1

∑

n

(yn −w>x)2

• What about the variance of parameters?
Yes, also:

var[w] = (XX>)−1σ2

• This allows us to put some crude error bars on our predictions:
p(ŷ|x) is Gaussian with

mean=w>x

variance= w>(XX>)−1w + σ2

Absolute Error

• What if we use absolute error with the linear model?
What’s the equivalent of the median estimator?

min
w

∑

n

|yn −w>xn|

• We need to solve a linear programming problem:

min
∑

n

tn

subject to − tn ≤ yn −w>xn ≤ tn

Multiple Outputs

• With multiple outputs, we can just treat each one separately.

• Amazingly, this is true even if the output noise is correlated.

• However, if the output noises are correlated and the noise changes
from case to case, then the solutions are coupled.

Regularization

• What? You thought the linear model was simple enough that we
don’t need to regularlize it? Everything needs regularization!

• Example: you have fewer training cases than input dimensions.
Now XX> will not be invertible.

• Example: certain input dimensions are useless (on average) at
predicting the output. But because of noise or small samples, you
can always reduce the training error a tiny bit by putting huge
weights on these dimensions. At test time you get killed.

• Two common solutions:

– input subset selection

– parameter shrinkage

Subset Selection

• Use only a few xi as inputs, discard the rest.
Advantages: introduces inductive bias, produces small models.
Disadvantage: high variability because of binary choices.

• Forward stepwise selection: start with constant and iteratively add
the single xi which most decreases error.

• Backward stepwise selection: start with constant and iteratively add
the single xi which most decreases error.

• Leaps-and-Bounds: Furnival and Wilson (74) came up with a very
clever branch-and-bound trick for efficiently trying all possible

subsets. Works for up to ≈ 40 variables.

• Choose subset size with cross validation or F-statistic tests.

Shrinkage

• Idea: pull (“shrink”) estimated parameters towards some fixed
values that do not depend on the data. (Whoa....)

• Usually we shrink towards zero.

• Thus: penalize coefficients based on their size.

• For a penalty which is the sum of the squares of the weights, this is
known as “weight decay” or “ridge regression”:

y = w>x

e =
∑

n

(yn − w>x)2 + λ
∑

i

w2
i

w∗ = (XX> + λI)−1Xy>

where I is the identity matrix.

Ridge Regression

• Same trick as when we were training Gaussian classifiers.

• Set λ with cross-validation.

• There is a trick which lets you compute the leave-one-out error very
efficiently without refitting N times.

• Warning: ridge regression is not invariant to input rescaling.
Often we want to “whiten/sphere” inputs first (i.e. rescale them so
their sample covariance is a multiple of the identity matrix).

Lasso

• Shrinkage has less variance but doesn’t give small models.
Can we get the best of both worlds?

• Lasso: squared error with absolute weight penalty.

e =
∑

n

(yn − w>x)2 + λ
∑

i

|wi|

• Requires quadratic programming to solve, but still unique optimum.

• Cool thing happens: may coefficients go exactly to zero.

Error Function Geometry

wi

wj

w
|w|

2 e

w_lasso

w_ridge

Beyond Linear Regression

• We can augment the inputs, not just with a constant to get a bias
term, but with lots of other things.

• If we decide beforehand on how to augment the input, this is still
linear regression:

y =
∑

j

wjhj(x)

• For linear regression, just use h0 = 1, hj = xj.

• Optimal weights are still easy to find:

e =
∑

n

(yn −w>h(x))2

w∗ = (HH>)−1Hy>

where h(x) is a vector of basis function outputs and H is a matrix
with columns h(xn).

Generalized Linear Models

• Any fixed, generalized basis set that depends on the inputs can be
used to make a generalized linear model.

• Elements of basis are called dictionary functions.

• Examples include splines, radial basis functions, wavelets, etc.

• Common things to add: quadratic or other polynomial terms,
sinusoidal terms, exponentials, square roots, logarithms, etc.

• Terms can depend on more than one input e.g.
hj(x) = x2x8x9

hj(x) = ‖x‖2

hj(x) = [a ≤ xi ≤ b][c ≤ xj ≤ d]

• These models can also be use for classification:
as inputs to logistic/softmax regression, as a space for Fisher
disciminants/Gaussians class-conditionals, KNN, etc.

• This is the “kernel” idea, which I hope to get to later!

Splines

• You can construct a special basis set that gives piecewise constant
functions between pre-specified split points (“knots”) ai:

h1 = (x−a1)+ h2 = (x−a2)+ . . . hk = (x−ak)+ hk+1 = x hk+2 = 1

where (x − ai)+ is the positive part of (x − ai).

• To enforce continuity up to the (r − 1)st derivative, use

h1 = (x − a1)
r
+ . . . hk = (x − ak)r+ hk+1 = xr . . . hk+r+1 = 1

• Most common: cubic splines, corresponding to r = 3.

• Can also enforce linearity beyond edges: natural cubic spline.

ai

Radial Basis Functions

• One way to generate a nice automatic basis is to place a dictionary
element on each input datapoint, whose value depends on the
distance of the input from the point it is on top of:

hn(x) = exp

[

− 1

2σ2
‖x − xn‖2

]

• Tricky part is setting σ2.

x x x x x1 2 3 4 5

h h h h h1 2 3 4 5

Neural Networks

• Another generalized linear model, this time with the basis set:

hj = g

∑

i

wijxi

with g() a “squashing” function with limited outputs, e.g.

g(z) =
1

1 + e−z
g(z) = tanh(z)

• The outputs hj are known as the “hidden layer”.

β

W

σ

x

ij

y

h j

Regularization: Learning the basis

• In all the examples above, the basis functions were fixed.

• Ideally, we’d like to adjust the basis set also.
E.g. where are the knots for splines, the centres for RBF’s, what
are the input-to-hidden weights for neural networks?

• Three strategies: shrinkage, subset, adaptive.

• Shrinkage: of course, we can also do ridge regression on these
generalized basis sets, by penalizing the coefficients.
For splines, this technique gives smoothing splines.

• We can also start with a huge dictionary and try to pick a few
elements. This is subset selection from a broader choice set.

• Lastly, we can have a fixed number of adaptive elements. Next
lecture we can see how to do this, for certain error functions, using
gradient descent. But the solutions are no longer optimal.

Multivariate Adaptive Regression Splines (MARS)

• Piecewise constant 1D splines with knots at each data point value
in each dimension. Also the “reflected pairs”.

hni(x) = (xi − xni)+ h2ni(x) = (xni − xi)+

• Now use forward stepwise regression, chosing from these basic
elements and any product between them and an existing dictionary
element.

• Then do backwards deletion.

• Another Stanford masterpiece. (What’s in the water in Palo Alto?)

Things I won’t cover

• Regression trees (very similar to MARS but worse).

• Partial Least Squares

• Empirical Bayes (ML-II)
Automatic Relevance Determination (ARD)

• Canonical Correlation Analysis

More reading: Hastie et al. Ch4,5,9.4

