Efficient Quantum State Synthesis with One Query

Gregory Rosenthal University of {Cambridge, Warwick}

SODA 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Computation reduces to decision problems

- $f: \{0,1\}^n \to \{0,1\}^m$ is *m* decision problems.
- Or one quantum query to $g : \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}$, $g(x,r) = \langle f(x), r \rangle_{\mathbb{F}_2}$ [BV97].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Search, sampling, etc. reduce to functions.
- This talk: what about constructing quantum states?

State synthesis

Goal: algorithm A making quantum queries to a boolean function, such that ∀|ψ⟩: ∃f : A^f maps |0⟩ to ≈ |ψ⟩.

Clean solution	$ \psi angle 0 angle$	0
Non-clean solution	$ \psi angle \left garbage_{\psi} ight angle$	\bigcirc

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

State synthesis algorithms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Exponential time (trivial)

- Query the description of $|\psi\rangle$, then construct it.
- For a clean construction, uncompute the description with a second query.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Polynomial time [Z98,KM01,GR02,A16]

- 1. Write $|\psi\rangle = \alpha_0 |0\rangle |\psi_0\rangle + \alpha_1 |1\rangle |\psi_1\rangle$.
- 2. Query α_0, α_1 to finite precision.
- 3. Construct $\alpha_0|0\rangle + \alpha_1|1\rangle$.
- 4. Controlled on $b \in \{0, 1\}$, recursively construct $|\psi_b\rangle$.
- 5. Uncompute α_0, α_1 .
- Problem: for some applications we want O(1) queries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Polynomial space, O(1) queries [INNRY22]

- ► ∃ nonuniform poly(n)-qubit circuit C_n of size 2^{poly(n)} making 1 (resp. 2) queries:
- \forall *n*-qubit states $|\psi\rangle$:
- ► ∃ f:
- C_n^f non-cleanly (resp. cleanly) constructs $|\psi\rangle$ to within error 1/poly(n) (resp. $2^{-\text{poly}(n)}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polynomial time, O(1) queries

- ▶ \exists uniform poly(*n*)-size circuit C_n making 1 (resp. 4) queries:
- \forall *n*-qubit states $|\psi\rangle$:
- $\exists f$ depending explicitly on $|\psi\rangle$:
- C_n^f non-cleanly (resp. cleanly) constructs $|\psi\rangle$ to within error $2^{-\operatorname{poly}(n)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comparison of state synthesis algorithms

Algorithm	Queries	Size	Space	Error	Uniform	Clean
Trivial	1	exp	exp	1/exp	yes	no
	2					yes
[A16]	poly	poly	poly	1/exp	yes	yes
[INNRY22]	1	exp	poly	1/poly	no	no
	2			1/exp		yes
This paper	1	poly	poly	1/exp	yes	no
	4					yes

Proof sketch

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Constant-error solution [INNRY22]

- ► $\forall |\psi\rangle : \exists \text{ Clifford } C: \left| \langle \psi | \cdot C \sum_{x \in \{0,1\}^n} \pm 2^{-n/2} |x\rangle \right| \ge \Omega(1).$
- Intuition: Cliffords are a 2-design and Haar random states have high l₁ norm.
- Query maps $x \in \{0, 1\}^n$ to sign bit and description of C.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear Combinations of Unitaries (LCU) [CW12]

- Assume query access to unitaries U_j.
- Let $M = \sum_j c_j U_j$.
- ► Can implement $|\psi\rangle \mapsto M|\psi\rangle/||M|\psi\rangle||$ with success probability $(||M|\psi\rangle||/\sum_j |c_j|)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solution with constant success probability

• $|\psi\rangle \approx \sum_{j=0}^{\operatorname{poly}(n)} \alpha \beta^j |\phi_j\rangle$ where $|\phi_j\rangle$ is a "Clifford times phase state" and $0 < \alpha, \beta < 1$ are universal constants.

Boosting the success probability

 \blacktriangleright Parallel repetition and merge queries \implies 1 query, non-clean.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Amplitude amplification $\implies O(1)$ queries, clean.
- Hybrid approach \implies 4 queries, clean.

stateQIP(6) = statePSPACE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Interactive proof for a language L

Completeness: x ∈ L ⇒ ∃ prover s.t. Verifier accepts.
 Soundness: x ∉ L ⇒ ∀ provers, Verifier rejects w.h.p.

How powerful are interactive proofs?

- ► IP = languages with interactive proofs.
- PSPACE (i.e. polynomial space) [LFKN92,S92].
- \blacktriangleright = QIP (i.e. IP with a quantum verifier) [JJUW11].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \blacktriangleright = QIP(3) (i.e. QIP with three messages) [W03].

Interactive proof for constructing a state ρ [RY22]

- ► *Completeness*: ∃ prover s.t. Verifier accepts.
- Soundness: \forall provers s.t. w.p. $\geq 1/\mathsf{poly}(n)$ Verifier accepts, $\|\tilde{\rho} \rho\|_{\mathsf{tr}} \leq 1/\mathsf{poly}(n)$.

stateQIP = statePSPACE

- stateQIP = state sequences with interactive proofs.
- statePSPACE = quantum state analogue of PSPACE.
- statePSPACE ⊆ stateQIP [RY22]:
 - Polynomial-time state synthesis [A16].
 - Answer queries using IP=PSPACE in superposition.

- Additional steps to uncompute entangled garbage.
- ▶ stateQIP \subseteq statePSPACE [MY23].

$\mathsf{statePSPACE} \subseteq \mathsf{stateQIP(6)}$

- stateQIP(6) = six-message stateQIP.
- Follows from PSPACE ⊆ QIP(3) [W03] and polynomial-time, one-query state synthesis.

Barrier to QAC_f^0 lower bounds for approximately constructing explicit states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Circuit lower bounds for explicit states

- Exponential-size lower bounds for *exact* constructions [JW23].
- Trivial QNC⁰ lower bounds for approximate constructions.
- Why can't we prove *nontrivial* lower bounds for *approximate* constructions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Barrier [A16]

- Assume $|\psi\rangle$ cannot be (approximately) constructed by a poly-size circuit.
- $A \leftarrow$ poly-time state synthesis algorithm [A16].
- $f \leftarrow$ function such that A^f constructs $|\psi\rangle$.
- *f* ∉ BQP/poly because otherwise *A^f* would be a poly-size circuit for constructing |ψ⟩.

- This would be a huge breakthrough.
- ...But what about in weaker quantum circuit classes?

QAC_{f}^{0}

- Polynomial-size, constant-depth with one-qubit gates and unbounded-arity AND, OR and FANOUT gates.
- ► FANOUT $|b, 0^{n-1}\rangle = |b^n\rangle$ for $b \in \{0, 1\}$.

Physically motivated [GKHMDBC21,GDCEBDSCG22].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Barrier to QAC⁰_f lower bounds for explicit states

- Clifford unitaries are in QAC_f^0 [~AG04].
- $\blacktriangleright \implies$ This paper's state synthesis algorithm is in QAC⁰_f.
- $\blacktriangleright \implies QAC_f^0$ lower bounds for explicit states imply QAC_f^0 lower bounds for explicit functions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ $TC^0 \subseteq QAC_f^0$ [HS05,TT16] and we don't have TC^0 lower bounds for explicit functions.

Circuit complexity of approximately constructing worst-case states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Upper and lower bounds for constructing worst-case states

- $G \leftarrow$ universal gate set including AND, OR, NOT.
- Constructing worst-case *n*-qubit states to within error $\varepsilon \ge 2^{-\operatorname{poly}(n)}$ requires *G*-circuit size $\Theta(2^n \log(1/\varepsilon)/n)$.

Worst-case n-qubit states require circuit size Θ(2ⁿ) to exactly construct with arbitrary O(1)-qubit gates [ZLY22,GDASC23, STYYZ23,YZ23].

Proof sketch

Upper bound:

- This paper's state synthesis algorithm.
- Simulate *m*-bit queries with $O(2^m/m)$ -size circuits [L58].

Solovay-Kitaev theorem on the non-query operations.

Lower bound:

Counting argument.

Open problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Generalization to unitaries?

The "unitary synthesis problem": ∀U : ∃f : U efficiently reduces to f [AK07,A16]?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\tilde{O}(2^{n/2})$ queries & time suffices [R21].
- ▶ 1 query and $o(2^n)$ qubits does not suffice [LMW23].

Search-to-decision reduction for QMA?

- SAT has efficient search-to-decision reductions.
- Constructing ground states of local Hamiltonians efficiently reduces to one quantum query to a PP oracle [INNRY22].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What about to a QMA oracle?