Efficient Quantum State Synthesis with One Query

\author{
Gregory Rosenthal
 University of \｛Cambridge，Warwick\}

}

SODA 2024

Computation reduces to decision problems

- $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is m decision problems.
- Or one quantum query to $g:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$, $g(x, r)=\langle f(x), r\rangle_{\mathbb{F}_{2}}$ [BV97].
- Search, sampling, etc. reduce to functions.
- This talk: what about constructing quantum states?

State synthesis

- Goal: algorithm A making quantum queries to a boolean function, such that $\forall|\psi\rangle: \exists f: A^{f}$ maps $|0\rangle$ to $\approx|\psi\rangle$.

Clean solution	$\|\psi\rangle\|0\rangle$	$(0$
Non-clean solution	$\|\psi\rangle \mid$ garbage $\left._{\psi}\right\rangle$	\because

State synthesis algorithms

Exponential time (trivial)

- Query the description of $|\psi\rangle$, then construct it.
- For a clean construction, uncompute the description with a second query.

Polynomial time [Z98,KM01,GR02,A16]

1. Write $|\psi\rangle=\alpha_{0}|0\rangle\left|\psi_{0}\right\rangle+\alpha_{1}|1\rangle\left|\psi_{1}\right\rangle$.
2. Query α_{0}, α_{1} to finite precision.
3. Construct $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$.
4. Controlled on $b \in\{0,1\}$, recursively construct $\left|\psi_{b}\right\rangle$.
5. Uncompute α_{0}, α_{1}.

- Problem: for some applications we want $O(1)$ queries.

Polynomial space, $O(1)$ queries [INNRY22]

$-\exists$ nonuniform poly (n)-qubit circuit C_{n} of size $2^{\text {poly(n) }}$ making 1 (resp. 2) queries:

- \forall n-qubit states $|\psi\rangle$:
- $\exists f$:
- C_{n}^{f} non-cleanly (resp. cleanly) constructs $|\psi\rangle$ to within error $1 / \operatorname{poly}(n)\left(\right.$ resp. $\left.2^{-\operatorname{poly}(n)}\right)$.

Polynomial time, $O(1)$ queries

- \exists uniform poly (n)-size circuit C_{n} making 1 (resp. 4) queries:
- \forall n-qubit states $|\psi\rangle$:
- $\exists f$ depending explicitly on $|\psi\rangle$:
- C_{n}^{f} non-cleanly (resp. cleanly) constructs $|\psi\rangle$ to within error $2^{-\mathrm{poly}(n)}$.

Comparison of state synthesis algorithms

Algorithm	Queries	Size	Space	Error	Uniform	Clean
Trivial	1	exp	exp	1/exp	yes	no
	2					yes
[A16]	poly	poly	poly	1/exp	yes	yes
[INNRY22]	1	exp	poly	1/poly	no	no
	2			1/exp		yes
This paper	1	poly	poly	1/exp	yes	no
	4					yes

Proof sketch

Constant-error solution [INNRY22]

- $\forall|\psi\rangle: \exists$ Clifford $\left.C:\left|\langle\psi| \cdot C \sum_{x \in\{0,1\}^{n}} \pm 2^{-n / 2}\right| x\right\rangle \mid \geq \Omega(1)$.
- Intuition: Cliffords are a 2-design and Haar random states have high ℓ_{1} norm.
- Query maps $x \in\{0,1\}^{n}$ to sign bit and description of C.

Linear Combinations of Unitaries (LCU) [CW12]

- Assume query access to unitaries U_{j}.
- Let $M=\sum_{j} c_{j} U_{j}$.
- Can implement $|\psi\rangle \mapsto M|\psi\rangle / \| M|\psi\rangle \|$ with success probability $\left(\| M|\psi\rangle \| / \sum_{j}\left|c_{j}\right|\right)^{2}$.

Solution with constant success probability

- $|\psi\rangle \approx \sum_{j=0}^{\text {poly }(n)} \alpha \beta^{j}\left|\phi_{j}\right\rangle$ where $\left|\phi_{j}\right\rangle$ is a "Clifford times phase state" and $0<\alpha, \beta<1$ are universal constants.

- Do LCU.

Boosting the success probability

- Parallel repetition and merge queries $\Longrightarrow 1$ query, non-clean.
- Amplitude amplification $\Longrightarrow O(1)$ queries, clean.
- Hybrid approach $\Longrightarrow 4$ queries, clean.

stateQIP(6) = statePSPACE

Interactive proof for a language L

Accept or Reject

- Completeness: $x \in L \Longrightarrow \exists$ prover s.t. Verifier accepts.
- Soundness: $x \notin L \Longrightarrow \forall$ provers, Verifier rejects w.h.p.

How powerful are interactive proofs?

- IP = languages with interactive proofs.
- = PSPACE (i.e. polynomial space) [LFKN92,S92].
- = QIP (i.e. IP with a quantum verifier) [JJUW11].
- $=$ QIP(3) (i.e. QIP with three messages) [W03].

Interactive proof for constructing a state ρ [RY22]

\downarrow
(Accept, $\tilde{\rho}$) or Reject

- Completeness: \exists prover s.t. Verifier accepts.
- Soundness: \forall provers s.t. w.p. $\geq 1 / \operatorname{poly}(n)$ Verifier accepts, $\|\tilde{\rho}-\rho\|_{\text {tr }} \leq 1 / \operatorname{poly}(n)$.

stateQIP $=$ statePSPACE

- stateQIP = state sequences with interactive proofs.
- statePSPACE $=$ quantum state analogue of PSPACE.
- statePSPACE \subseteq stateQIP [RY22]:
- Polynomial-time state synthesis [A16].
- Answer queries using IP=PSPACE in superposition.
- Additional steps to uncompute entangled garbage.
- stateQIP \subseteq statePSPACE [MY23].

statePSPACE \subseteq stateQIP(6)

- stateQIP(6) = six-message stateQIP.
- Follows from PSPACE \subseteq QIP(3) [W03] and polynomial-time, one-query state synthesis.

Barrier to QAC $_{f}^{0}$ lower bounds for approximately constructing explicit states

Circuit lower bounds for explicit states

- Exponential-size lower bounds for exact constructions [JW23].
- Trivial QNC ${ }^{0}$ lower bounds for approximate constructions.
- Why can't we prove nontrivial lower bounds for approximate constructions?

Barrier [A16]

- Assume $|\psi\rangle$ cannot be (approximately) constructed by a poly-size circuit.
- $A \leftarrow$ poly-time state synthesis algorithm [A16].
- $f \leftarrow$ function such that A^{f} constructs $|\psi\rangle$.
- $f \notin \mathrm{BQP} /$ poly because otherwise A^{f} would be a poly-size circuit for constructing $|\psi\rangle$.
- This would be a huge breakthrough.
...But what about in weaker quantum circuit classes?

QAC_{f}^{0}

- Polynomial-size, constant-depth with one-qubit gates and unbounded-arity AND, OR and FANOUT gates.
- FANOUT $\left|b, 0^{n-1}\right\rangle=\left|b^{n}\right\rangle$ for $b \in\{0,1\}$.

- Physically motivated [GKHMDBC21,GDCEBDSCG22].

Barrier to QAC_{f}^{0} lower bounds for explicit states

- Clifford unitaries are in QAC $_{f}^{0}$ [\sim AG04].
- \Longrightarrow This paper's state synthesis algorithm is in QAC_{f}^{0}.
- \Longrightarrow QAC $_{f}^{0}$ lower bounds for explicit states imply QAC $_{f}^{0}$ lower bounds for explicit functions.
- $\mathrm{TC}^{0} \subseteq \mathrm{QAC}_{\mathrm{f}}^{0}[\mathrm{HS} 05, \mathrm{TT} 16]$ and we don't have TC^{0} lower bounds for explicit functions.

Circuit complexity of approximately constructing worst-case states

Upper and lower bounds for constructing worst-case states

- $G \leftarrow$ universal gate set including AND, OR, NOT.
- Constructing worst-case n-qubit states to within error $\varepsilon \geq 2^{-\operatorname{poly}(n)}$ requires G-circuit size $\Theta\left(2^{n} \log (1 / \varepsilon) / n\right)$.
- Worst-case n-qubit states require circuit size $\Theta\left(2^{n}\right)$ to exactly construct with arbitrary $O(1)$-qubit gates [ZLY22,GDASC23, STYYZ23,YZ23].

Proof sketch

Upper bound:

- This paper's state synthesis algorithm.
- Simulate m-bit queries with $O\left(2^{m} / m\right)$-size circuits [L58].
- Solovay-Kitaev theorem on the non-query operations.

Lower bound:

- Counting argument.

Open problems

Generalization to unitaries?

- The "unitary synthesis problem": $\forall U: \exists f: U$ efficiently reduces to $f[\mathrm{AK} 07, \mathrm{~A} 16]$?
- $\tilde{O}\left(2^{n / 2}\right)$ queries \& time suffices [R21].
- 1 query and $o\left(2^{n}\right)$ qubits does not suffice [LMW23].

Search-to-decision reduction for QMA?

- SAT has efficient search-to-decision reductions.
- Constructing ground states of local Hamiltonians efficiently reduces to one quantum query to a PP oracle [INNRY22].
- What about to a QMA oracle?

