
Interactive Proofs for Synthesizing Quantum
States and Unitaries

Gregory Rosenthal1 Henry Yuen2

1University of Toronto

2Columbia University

ITCS 2022

State & unitary synthesis

I State synthesis: Construct a (succinctly described) quantum
state.
I E.g. quantum money, quantum PRS, . . .

I Unitary synthesis: Apply a (succinctly described) unitary
transformation to a given input register.
I E.g. variational quantum eigensolvers, decoders for quantum

error-correcting codes, . . .

I Poorly understood compared to decision problems.

Why state & unitary synthesis seems hard

Quantum analogue of function problems, but
I No clear reduction to decision problems.

I Whereas computing a string reduces to computing each bit
individually.

I An n-qubit state
∑

x∈{0,1}n αx |x〉 has 2n amplitudes.

I For unitary synthesis, since the input state is unknown, it’s
impossible to describe the output state.

Our contributions

I Progress toward “IP = PSPACE for quantum states &
unitaries”:
I statePSPACE ⊆ stateQIP ⊆ stateEXP.
I special case of unitaryPSPACE ⊆ unitaryQIP.

I Definitions of these classes.

I Similar results with multiple entangled provers.

I (Proofs nontrivially reduce to QIP = PSPACE [JJUW’11] and
MIP∗ = RE [JNVWY’20].)

Our contributions

I Progress toward “IP = PSPACE for quantum states &
unitaries”:
I statePSPACE ⊆ stateQIP ⊆ stateEXP.
I special case of unitaryPSPACE ⊆ unitaryQIP.

I Definitions of these classes.

I Similar results with multiple entangled provers.

I (Proofs nontrivially reduce to QIP = PSPACE [JJUW’11] and
MIP∗ = RE [JNVWY’20].)

Interactive state & unitary synthesis (1/2)

BQP verifier does the following:

I Interact with an untrusted quantum prover (quantum
messages, polynomially many rounds).

I Accept or reject.

I If accepting, also output a quantum state.

(Like QIP except the last step.)

Interactive state & unitary synthesis (2/2)

I Completeness: There exists an “honest” prover strategy such
that with probability 1, the verifier accepts and the output
state is ≈ correct.

I Soundness: For all prover strategies such that the verifier
accepts with non-negligible probability, the output state
conditioned on accepting is ≈ correct.

Interactive state synthesis

I Completeness: There exists an “honest” prover strategy such
that with probability 1, the verifier accepts and the output
state is correct to within exp(−poly(n)) trace distance error.

I Soundness: For all prover strategies such that the verifier
accepts with probability ≥ exp(−poly(n)), the output state
conditioned on accepting is correct to within 1/poly(n) t.d.
error.

Interactive unitary synthesis

I Completeness: There exists an “honest” prover strategy such
that with probability 1, the verifier accepts and the output
state is correct to within 1/poly(n) trace distance error.

I Soundness: For all prover strategies such that the verifier
accepts with probability ≥ exp(−poly(n)), the output state
conditioned on accepting is correct to within 1/poly(n) t.d.
error.

State & unitary complexity classes

I stateQIP = sequences (|ψn〉)n with |ψn〉 on n qubits that can
be synthesized as above.
I More generally, could consider (|ψx〉)x∈{0,1}∗ .

I unitaryQIP = sequences (Un)n with Un acting on n qubits
that can be synthesized as above.

I statePSPACE = sequences (|ψn〉)n with |ψn〉 on n qubits that
can be ≈ constructed in quantum poly(n) space.

I unitaryPSPACE = defined similarly.

Quantum polynomial space

(Cn)n is a family of quantum polynomial-space circuits if

I There is a PSPACE machine that on input 1n outputs the
description of Cn.

I Cn consists of the following operations:
I one- and two-qubit gates from a universal gate set,
I standard-basis measurements,
I tracing out qubits,
I introducing new qubits (initialized to |0〉).

I Cn uses at most poly(n) qubits at any point.

Our contributions

I Progress toward “IP = PSPACE for quantum states &
unitaries”:
I statePSPACE ⊆ stateQIP ⊆ stateEXP.
I special case of unitaryPSPACE ⊆ unitaryQIP.

I Definitions of these classes.

I Similar results with multiple entangled provers.

I (Proofs nontrivially reduce to QIP = PSPACE [JJUW’11] and
MIP∗ = RE [JNVWY’20].)

State synthesis with a trusted prover [Aaronson’16]

I Write the target state as |ψ〉 =
∑1

i=0 βi |i〉|θi 〉.
I Query (β0, β1) to finite precision.

I Construct β0|0〉+ β1|1〉 in a register R.

I Uncompute (β0, β1).

I Controlled on the bit i in R, recursively construct |θi 〉.
Why do we uncompute (β0, β1)?

I Otherwise instead of constructing |ψ〉 =
∑

x∈{0,1}n αx |x〉 we’d
construct

∑
x∈{0,1}n αx |x〉|garbagex〉.

First attempt at state synthesis with an untrusted prover

I For statePSPACE states, the queries from the trusted-prover
protocol are computable in PSPACE.
I Follows from PSPACE = BQPSPACE [Watrous’03] and

quantum state tomography.

I Idea: run the trusted-prover protocol & answer the queries
using IP = PSPACE (in superposition).

I However the prover might not uncompute honestly.
I E.g. if the target state is |ψ〉 =

∑
x∈{0,1}n αx |x〉, the verifier

might output the first n qubits of
∑

x∈{0,1}n αx |x〉|φx〉 for

some state |φx〉 held by the prover.

The actual protocol (1/3)

I Notation: for 0 ≤ k ≤ n let |ψk〉 denote the k-qubit state
after k iterations of the trusted-prover protocol.

I Given two copies of |ψk〉, “Copy 1” and “Copy 2”, the verifier
obtains two copies of |ψk+1〉 as follows:

I Flip a coin. If heads:
I [Should yield two copies of |ψk+1〉.]

I If tails:
I [Should maintain the two copies of |ψk〉; the point is to detect

cheating.]
I Flip another coin.

The actual protocol (2/3)

I If heads:
I Simulate a round of the trusted-prover protocol on Copy 1

(should yield |ψk+1〉).
I Request a second copy of |ψk+1〉 from the prover.
I Swap test to ensure these are the same state.

I If tails:
I Simulate a round of the trusted-prover protocol on Copy 1,

minus the private step that grows the state by a qubit (should
yield |ψk〉).

I Swap test with Copy 2 to ensure it’s actually |ψk〉.
I Flip another coin.

State synthesis with a trusted prover [Aaronson’16]

I Write the target state as |ψ〉 =
∑1

i=0 βi |i〉|θi 〉.
I Query (β0, β1) to finite precision.

I Construct β0|0〉+ β1|1〉 in a register R.

I Uncompute (β0, β1).

I Controlled on the bit i in R, recursively construct |θi 〉.
Why do we uncompute (β0, β1)?

I Otherwise instead of constructing |ψ〉 =
∑

x∈{0,1}n αx |x〉 we’d
construct

∑
x∈{0,1}n αx |x〉|garbagex〉.

The actual protocol (2/3)

I If heads:
I Simulate a round of the trusted-prover protocol on Copy 1

(should yield |ψk+1〉).
I Request a second copy of |ψk+1〉 from the prover.
I Swap test to ensure these are the same state.

I If tails:
I Simulate a round of the trusted-prover protocol on Copy 1,

minus the private step that grows the state by a qubit (should
yield |ψk〉).

I Swap test with Copy 2 to ensure it’s actually |ψk〉.
I Flip another coin.

The actual protocol (3/3)

Soundness amplification:

I Execute the above protocol poly(n) times.

I If any execution rejects, then reject.

I Otherwise, accept and output the output state of a uniform
random one of these executions.

Our contributions

I Progress toward “IP = PSPACE for quantum states &
unitaries”:
I statePSPACE ⊆ stateQIP ⊆ stateEXP.
I special case of unitaryPSPACE ⊆ unitaryQIP.

I Definitions of these classes.

I Similar results with multiple entangled provers.

I (Proofs nontrivially reduce to QIP = PSPACE [JJUW’11] and
MIP∗ = RE [JNVWY’20].)

stateQIP ⊆ stateEXP

I Find an ≈ honest prover by optimizing over an SDP.
I The SDP variables are the density matrices held by the verifier

at the beginning/end of each round.
I Constraints describe start state, transitions between rounds,

end state accepted w.h.p.
I Like [KW’00]’s original proof of QIP ⊆ EXP.

I Simulate the stateQIP protocol with that prover.

“Polynomial-action unitaryPSPACE” ⊆ unitaryQIP

I An n-qubit unitary U has polynomial action if U acts
nontrivially on a subspace of dimension at most poly(n).

I Use [LMR’14]’s Hamiltonian simulation algorithm and
statePSPACE ⊆ stateQIP, i.e.
I If U = exp(itρ) then a purification of ρ is in statePSPACE.
I Evolution time t is computable in PSPACE = QIP.

I Polynomial-action assumption ⇒ t ≤ poly(n) ⇒ at most
poly(n) copies of ρ required.

Multiple entangled provers

I stateR = sequences (|ψn〉)n with |ψn〉 on n qubits such that a
description of ≈ |ψn〉 is computable as a function of n.

I stateR = stateQMIP.
I ⊆: like the proof of statePSPACE ⊆ stateQIP but using

MIP∗ = RE.
I ⊇: brute-force over provers, which terminates because an

honest prover exists.
I (Whereas for L ∈ MIP∗ and x /∈ L, the search fails to

terminate on input x .)

I “polynomial-action unitaryR” ⊆ unitaryQMIP.

Open problems

I stateQIP ⊆ statePSPACE?

I Improve 1/poly(n) errors in some of our results to
exp(−poly(n)).

I Reduce the number of rounds.
I We conjecture that a particular constant-round variant of our

protocol works.

I unitaryPSPACE ⊆ unitaryQIP?

I Synthesis of mixed states?

I State/unitary synthesis with efficient provers?

I Multiple unentangled provers?

I Zero-knowledge? Crypto applications?

