Interactive Proofs for Synthesizing Quantum States and Unitaries

Gregory Rosenthal¹ Henry Yuen²

¹University of Toronto

²Columbia University

ITCS 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

State & unitary synthesis

- State synthesis: Construct a (succinctly described) quantum state.
 - E.g. quantum money, quantum PRS, ...
- Unitary synthesis: Apply a (succinctly described) unitary transformation to a given input register.
 - E.g. variational quantum eigensolvers, decoders for quantum error-correcting codes, ...

Poorly understood compared to decision problems.

Why state & unitary synthesis seems hard

Quantum analogue of function problems, but

- ► No clear reduction to decision problems.
 - Whereas computing a string reduces to computing each bit individually.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- An *n*-qubit state $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ has 2^n amplitudes.
- For unitary synthesis, since the input state is unknown, it's impossible to describe the output state.

Our contributions

- Progress toward "IP = PSPACE for quantum states & unitaries":
 - ▶ statePSPACE \subseteq stateQIP \subseteq stateEXP.
 - special case of unitaryPSPACE ⊆ unitaryQIP.
- Definitions of these classes.
- Similar results with multiple entangled provers.
- (Proofs nontrivially reduce to QIP = PSPACE [JJUW'11] and MIP* = RE [JNVWY'20].)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our contributions

- Progress toward "IP = PSPACE for quantum states & unitaries":
 - ▶ statePSPACE \subseteq stateQIP \subseteq stateEXP.
 - special case of unitaryPSPACE ⊆ unitaryQIP.
- Definitions of these classes.
- Similar results with multiple entangled provers.
- (Proofs nontrivially reduce to QIP = PSPACE [JJUW'11] and MIP* = RE [JNVWY'20].)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interactive state & unitary synthesis (1/2)

BQP verifier does the following:

Interact with an untrusted quantum prover (quantum messages, polynomially many rounds).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Accept or reject.
- If accepting, also output a quantum state.

(Like QIP except the last step.)

Interactive state & unitary synthesis (2/2)

► Completeness: There exists an "honest" prover strategy such that with probability 1, the verifier accepts and the output state is ≈ correct.

Soundness: For all prover strategies such that the verifier accepts with non-negligible probability, the output state conditioned on accepting is ≈ correct.

Interactive state synthesis

- Completeness: There exists an "honest" prover strategy such that with probability 1, the verifier accepts and the output state is correct to within exp(-poly(n)) trace distance error.
- Soundness: For all prover strategies such that the verifier accepts with probability ≥ exp(-poly(n)), the output state conditioned on accepting is correct to within 1/poly(n) t.d. error.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Interactive unitary synthesis

- Completeness: There exists an "honest" prover strategy such that with probability 1, the verifier accepts and the output state is correct to within 1/poly(n) trace distance error.
- Soundness: For all prover strategies such that the verifier accepts with probability ≥ exp(-poly(n)), the output state conditioned on accepting is correct to within 1/poly(n) t.d. error.

State & unitary complexity classes

- ▶ stateQIP = sequences $(|\psi_n\rangle)_n$ with $|\psi_n\rangle$ on *n* qubits that can be synthesized as above.
 - More generally, could consider $(|\psi_x\rangle)_{x \in \{0,1\}^*}$.
- unitaryQIP = sequences $(U_n)_n$ with U_n acting on n qubits that can be synthesized as above.
- ▶ statePSPACE = sequences $(|\psi_n\rangle)_n$ with $|\psi_n\rangle$ on *n* qubits that can be \approx constructed in quantum poly(*n*) space.

unitaryPSPACE = defined similarly.

Quantum polynomial space

 $(C_n)_n$ is a family of quantum polynomial-space circuits if

- There is a PSPACE machine that on input 1ⁿ outputs the description of C_n.
- C_n consists of the following operations:
 - one- and two-qubit gates from a universal gate set,

- standard-basis measurements,
- tracing out qubits,
- introducing new qubits (initialized to $|0\rangle$).
- C_n uses at most poly(n) qubits at any point.

Our contributions

- Progress toward "IP = PSPACE for quantum states & unitaries":
 - **statePSPACE** \subseteq **stateQIP** \subseteq **stateEXP**.
 - special case of unitaryPSPACE ⊆ unitaryQIP.
- Definitions of these classes.
- Similar results with multiple entangled provers.
- (Proofs nontrivially reduce to QIP = PSPACE [JJUW'11] and MIP* = RE [JNVWY'20].)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

State synthesis with a trusted prover [Aaronson'16]

- Write the target state as $|\psi\rangle = \sum_{i=0}^{1} \beta_i |i\rangle |\theta_i\rangle$.
- Query (β_0, β_1) to finite precision.
- Construct $\beta_0 |0\rangle + \beta_1 |1\rangle$ in a register R.
- Uncompute (β_0, β_1) .
- Controlled on the bit *i* in R, recursively construct $|\theta_i\rangle$.

Why do we uncompute (β_0, β_1) ?

• Otherwise instead of constructing $|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ we'd construct $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ |garbage_x \rangle .

First attempt at state synthesis with an *untrusted* prover

- For statePSPACE states, the queries from the trusted-prover protocol are computable in PSPACE.
 - Follows from PSPACE = BQPSPACE [Watrous'03] and quantum state tomography.
- Idea: run the trusted-prover protocol & answer the queries using IP = PSPACE (in superposition).

However the prover might not uncompute honestly.

E.g. if the target state is |ψ⟩ = ∑_{x∈{0,1}ⁿ} α_x|x⟩, the verifier might output the first *n* qubits of ∑_{x∈{0,1}ⁿ} α_x|x⟩|φ_x⟩ for some state |φ_x⟩ held by the prover.

The actual protocol (1/3)

- Notation: for 0 ≤ k ≤ n let |ψ_k⟩ denote the k-qubit state after k iterations of the trusted-prover protocol.
- ▶ Given two copies of |ψ_k⟩, "Copy 1" and "Copy 2", the verifier obtains two copies of |ψ_{k+1}⟩ as follows:
- Flip a coin. If heads:
 - [Should yield two copies of $|\psi_{k+1}\rangle$.]
- If tails:
 - ► [Should maintain the two copies of |ψ_k⟩; the point is to detect cheating.]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Flip another coin.

The actual protocol (2/3)

If heads:

- Simulate a round of the trusted-prover protocol on Copy 1 (should yield |ψ_{k+1}⟩).
- Request a second copy of $|\psi_{k+1}\rangle$ from the prover.

Swap test to ensure these are the same state.

- If tails:
 - Simulate a round of the trusted-prover protocol on Copy 1, minus the private step that grows the state by a qubit (should yield |ψ_k⟩).

- Swap test with Copy 2 to ensure it's actually $|\psi_k\rangle$.
- Flip another coin.

State synthesis with a trusted prover [Aaronson'16]

- Write the target state as $|\psi\rangle = \sum_{i=0}^{1} \beta_i |i\rangle |\theta_i\rangle$.
- Query (β_0, β_1) to finite precision.
- Construct $\beta_0 |0\rangle + \beta_1 |1\rangle$ in a register R.
- Uncompute (β_0, β_1) .
- Controlled on the bit *i* in R, recursively construct $|\theta_i\rangle$.

Why do we uncompute (β_0, β_1) ?

• Otherwise instead of constructing $|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ we'd construct $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ |garbage_x \rangle .

The actual protocol (2/3)

If heads:

- Simulate a round of the trusted-prover protocol on Copy 1 (should yield |ψ_{k+1}⟩).
- Request a second copy of $|\psi_{k+1}\rangle$ from the prover.

Swap test to ensure these are the same state.

- If tails:
 - Simulate a round of the trusted-prover protocol on Copy 1, minus the private step that grows the state by a qubit (should yield |ψ_k⟩).

- Swap test with Copy 2 to ensure it's actually $|\psi_k\rangle$.
- Flip another coin.

The actual protocol (3/3)

Soundness amplification:

- Execute the above protocol poly(n) times.
- If any execution rejects, then reject.
- Otherwise, accept and output the output state of a uniform random one of these executions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our contributions

- Progress toward "IP = PSPACE for quantum states & unitaries":
 - statePSPACE \subseteq stateQIP \subseteq stateEXP.
 - special case of unitaryPSPACE ⊆ unitaryQIP.
- Definitions of these classes.
- Similar results with multiple entangled provers.
- (Proofs nontrivially reduce to QIP = PSPACE [JJUW'11] and MIP* = RE [JNVWY'20].)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\mathsf{stateQIP} \subseteq \mathsf{stateEXP}$

Find an \approx honest prover by optimizing over an SDP.

The SDP variables are the density matrices held by the verifier at the beginning/end of each round.

- Constraints describe start state, transitions between rounds, end state accepted w.h.p.
- Like [KW'00]'s original proof of QIP \subseteq EXP.
- Simulate the stateQIP protocol with that prover.

"Polynomial-action unitaryPSPACE" ⊆ unitaryQIP

- An n-qubit unitary U has polynomial action if U acts nontrivially on a subspace of dimension at most poly(n).
- Use [LMR'14]'s Hamiltonian simulation algorithm and statePSPACE ⊆ stateQIP, i.e.
 - If $U = \exp(it\rho)$ then a purification of ρ is in statePSPACE.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Evolution time t is computable in PSPACE = QIP.
- Polynomial-action assumption ⇒ t ≤ poly(n) ⇒ at most poly(n) copies of p required.

Multiple entangled provers

- stateR = sequences (|ψ_n⟩)_n with |ψ_n⟩ on n qubits such that a description of ≈ |ψ_n⟩ is computable as a function of n.
- stateR = stateQMIP.
 - ⊆: like the proof of statePSPACE ⊆ stateQIP but using
 MIP* = RE.
 - ▶ ⊇: brute-force over provers, which terminates because an honest prover exists.
 - Whereas for L ∈ MIP* and x ∉ L, the search fails to terminate on input x.)

"polynomial-action unitaryR" ⊆ unitaryQMIP.

Open problems

- stateQIP \subseteq statePSPACE?
- Improve 1/poly(n) errors in some of our results to exp(-poly(n)).
- Reduce the number of rounds.
 - We conjecture that a particular constant-round variant of our protocol works.

- ▶ unitaryPSPACE ⊆ unitaryQIP?
- Synthesis of mixed states?
- State/unitary synthesis with efficient provers?
- Multiple unentangled provers?
- Zero-knowledge? Crypto applications?