1. In class, we proved the following theorem:

Theorem. If M is an NFA accepting a language L, then there is an NFA M' accepting the language L^*.

This shows that the set of regular languages is closed under the Kleene star operation. Consider the following “attempt” at constructing an NFA M' from M to prove this theorem.

Let $M = (\Sigma, Q_0, q_0, F_0, \delta_0)$ be a description of an NFA with the usual components (alphabet, states, start state, accept states, and transition function, respectively). Define $M' = (\Sigma, Q_1, q_1, F_1, \delta_1)$ as follows:

- $Q_1 = Q_0$: The states of M' are the same as M.
- $q_1 = q_0$: The start state of M' is the same as the start state of M.
- $F_1 = F_0 \cup \{q_1\}$: keep all the accepting states of M, and also make the start state an accepting state.
- Define $\delta_1 : Q_1 \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q_1)$ as follows. For each state $q \in Q_1$ and character $a \in \Sigma \cup \{\varepsilon\}$,

$$\delta_1(q, a) = \begin{cases}
\delta_0(q, a) & \text{if } q \text{ is not an accepting state or } a \neq \varepsilon \\
\delta_0(q, a) \cup \{q_1\} & \text{if } q \text{ is an accepting state and } a = \varepsilon.
\end{cases}$$

That is, δ_1 is the same as δ_0 except we add ε transitions from the final states of M' to the start state of M'.

Show that this construction does not prove the above theorem. That is, give a language L with an NFA M accepting it such that the NFA M' obtained by the above construction does not accept L^*.

Solution. The following DFA accepts the language $\{x \in \{0, 1\}^* \mid x \text{ contains } 001\}$.

Applying the construction yields an NFA which accepts 01, which is clearly not in L^*.
2. Give regular expressions for the following languages over the alphabet \(\Sigma = \{0, 1\} \).

(a) \(\{ x \mid \text{every odd character of } x \text{ is a 1}\} \).

Solution. \(1((0 \cup 1)1)^* (\varepsilon \cup 0 \cup 1) \).

(b) \(\{ x \mid x \text{ does not contain the substring 10}\} \).

Solution. \(0^*1^* \).

(c) (Extra Practice) \(\{ x \mid x \text{ contains at least three 1s}\} \).

(d) (Extra Practice) \(\{0, 1\}^* \setminus \{\varepsilon\} \).

3. For any string \(w = w_1w_2 \cdots w_n \) the **reverse** of \(w \), denoted \(w^R \), is (unsurprisingly) the string \(w_nw_{n-1} \cdots w_2w_1 \). Given a language \(A \), let \(A^R = \{ w^R : w \in A \} \). Show that if \(A \) is regular then so is \(A^R \).

Solution. Let \(M \) be a DFA computing \(A \), and let \(M' \) be the NFA obtained from \(M \) by creating a new unique accept state \(q_{acc} \), and adding \(\varepsilon \)-transitions from all old accept states of \(M \) to \(q_{acc} \). Clearly this new NFA accepts the same language as \(M \). Then, define \(M^R \) to be the NFA obtained from \(M \) by swapping the start and accept state of \(M' \) and then reversing all transitions in \(M' \) — so, for each transition from state \(q \) to state \(r \) labelled with a symbol \(a \), remove it and add the transition from \(r \) to \(q \) labelled with \(a \). We claim that \(M^R \) accepts \(A^R \).

First, suppose that \(x \) is accepted by \(M' \) and we show \(x^R \) is accepted by \(M^R \). This is easy to see: writing \(x = x_1x_2 \cdots x_n \) where each \(x_i \) is from the underlying alphabet, since \(x \) is accepted by \(M \) there is an accepting computation \(q_0, q_1, \ldots, q_n, q_{acc} \) where \(q_0 \) is the start state, \(q_i \in \delta(q_{i-1}, x_i) \) for each \(i = 1, 2, \ldots, n \), and \(q_{acc} \). We claim that \(q_{acc}, q_n, q_{n-1}, \ldots, q_0 \) is an accepting computation of \(M^R \) on \(x^R = x_nx_{n-1} \cdots x_1 \). This is clear: \(q_{acc} \) is the start state of \(M^R \), the first transition is an \(\varepsilon \)-transition, \(q_0 \) is an accept state, and each transition is available since the reverse transition was available in the original DFA.

Now, suppose \(x \) is accepted by \(M^R \), and we show \(x^R \) is accepted by \(M \). The only \(\varepsilon \)-transitions of \(M^R \) are from the start state \(q_{acc} \) to the old final states, so any accepting computation will be of the form \(q_{acc}, q_1, q_2, \ldots, q_{n-1}, q_0 \), since \(q_0 \) is the unique accept state of
Let x_n be the last character read by M^R. Since each transition of M^R was obtained by reversing a transition of M, which was a DFA, it follows that $\delta(q_0, x_n) = q_{n-1}$ was the unique transition from q_0 to q_{n-1} on input x_R. By induction, the same argument holds for each state, and it follows that on input x_R the DFA M will proceed through the states $q_0, q_{n-1}, q_{n-2}, \ldots, q_1$. But q_1 is an accept state of M by the construction of M^R.

4. In this question we will continue the development of the “distinguishability” relation, from Assignment 2. If L is a language and x, y are strings recall that x and y are distinguishable by L if there is a string z such that $xz \in L, yz \not\in L$.

![Figure 1: The DFA M](image)

(a) Consider the DFA M drawn above, which accepts the language

$$L = \{x \mid x \text{ contains the substring } aaab\}.$$

For any state q in the automata, let $S(q)$ be the set of strings defined by

$$S(q) = \{x \mid \text{the computation of } M \text{ on } x \text{ ends at } q\}.$$

For example, $S(q_{aa}) = L$, and a regular expression for $S(q_{a})$ is $(b^*a)[(b \cup ab)b^*a]^*$. Give regular expressions for $S(q_{e})$ and for $S(q_{aaa})$.

Solution. A general trick for these solutions is as follows, using q_{e} as an example: change the DFA so that the only final state is q_{e}, and then run the procedure for converting a DFA into a regular expression.

A regular expression for $S(q_{e})$ is $(b \cup (a(b \cup ab)))^*$. A regular expression for $S(q_{aaa})$ is $(b \cup (a(b \cup ab)))^*aaaa^*$

(b) Let $x, y \in S(q_{a})$ be any two strings that end up at the state q_{a} when run on M. Show that $x \equiv_L y$.

Solution. We actually prove the “Extra Practice” question below, as it is easier. We need to show that $x \equiv_L y$ for all $x, y \in S(q_{a})$. So, consider any string z, and we show that either $xz, yz \in L$ or $xz, yz \not\in L$. This is straightforward: the machine M ends up at the same state q_{a} on either x or y. Since M is a DFA, there is a unique computation path on z from the state q_{a} to some state q_{b}. If q_{b} is an accept state, then both $xz, yz \in L$; otherwise, neither xz nor yz are in L.

3
(c) (Extra Practice). Let L be a regular language and let M be a DFA computing L. Let q be any state in M. Show that, for any $x, y \in S(q)$, $x \equiv_L y$. (Observe that this implies the number of equivalence classes of L is at most the number of states in the smallest DFA computing L!).