In the problems below where you are asked to design an automata, you only need to give a state diagram. Further, anything marked Extra Practice is for your own benefit and will not be marked.

Edit. Important change to number 4 below. We should say \(x \equiv_L y \) if \(x \) and \(y \) are indistinguishable by \(L \) (an earlier version uploaded incorrectly said that \(x \equiv_L y \) if they were distinguishable by \(L \)).

1. Design a DFA\(^1\) for the following language over the alphabet \(\{a, b\} \):

\[\{x \mid x \text{ contains an equal number of occurrences of } ab \text{ and } ba \} \]

So, for example, the string \(aba \in D \) since it has one occurrence each of \(ab \) and \(ba \); but the string \(baba \not\in D \) since it has two occurrences of \(ba \) but only one occurrence of \(ab \).

Solution.

\(^1\)You just need to submit the state diagram.
2. Suppose that both \(A, B \subseteq \{0, 1\}^* \) are regular languages. Show that the language

\[
A \setminus B = \{ x \mid x \in A, x \notin B \}
\]

is regular.

Solution. First, we claim that the set \(\{0, 1\}^* \setminus B \) is regular. To see this, let \(M \) be any DFA for \(B \), with set of states \(Q \) and set of accepting states \(F \). Let \(M' \) be the same DFA as \(M \), except replace \(F \) with \(Q \setminus F \) — so, accepting states of \(M' \) are the regular states of \(M \), and the regular states of \(M' \) are the accepting states of \(M \). Clearly a string \(x \) is accepted by \(M' \) if and only if it is not accepted by \(M \); thus, the new DFA \(M' \) accepts \(\{0, 1\}^* \setminus B \).

Now, observe that \(A \setminus B = A \cap (\{0, 1\}^* \setminus B) \). We proved in class that regular languages are closed under intersection, and we just showed that they are closed under complementation. Thus, since \(A \) and \(B \) are regular so is \(A \setminus B \).

3. Give non-deterministic finite automata for the following two languages over \(\{0, 1\} \):

(a) \(\{00\} \) (that is, the language that contains *only* the string 00).

Solution.

- \(q_\varepsilon \) start
- \(0 \rightarrow q_0 \)
- \(0 \rightarrow q_{00} \)

(b) \(\{x \mid \text{The second-last character of } x \text{ is a 0}\} \).

Solution.

- \(q_0 \) start
- \(0 \rightarrow q_1 \)
- \(1 \rightarrow q_2 \)

(Extra Practice: For the second language, also give a DFA. What can you say about the DFA vs. the NFA?)

4. Let \(\Sigma \) be an alphabet. Let \(x \) and \(y \) be strings over \(\Sigma \) and let \(L \subseteq \Sigma^* \) be a language over \(\Sigma \). We say that \(x \) and \(y \) are distinguishable by \(L \) if there is a string \(z \) such that exactly one of the strings \(xz, yz \) is in \(L \). If \(x \) and \(y \) are not distinguishable by \(L \) then we write \(x \equiv_L y \).

(a) Consider the language \(L = \{x \mid x \text{ contains the string } 010\} \) over \(\{0, 1\}^* \). Give two distinct strings \(x \neq y \) which are distinguishable by \(L \), and two distinct strings \(x' \neq y' \) which are not distinguishable by \(L \). Explain your answer.

Solution. The strings \(x = 010 \) and \(y = 111 \) are distinguishable by \(L \), which is easily seen by choosing \(z = \varepsilon \): clearly \(xz = x \in L \) and \(yz = y \notin L \). On the other hand, the strings \(x = 010 \) and \(y = 1010 \) are not distinguishable by \(L \). Indeed, since 010 is a substring occurring in both \(x \) and \(y \), it follows that \(xz, yz \in L \) for any string \(z \).
(b) Let $x = 000$ and $y = 111$. Give an infinite regular language $L \subseteq \{0, 1\}^*$ such that x and y are distinguishable by L, and another infinite regular language L' such that x and y are not distinguishable by $L' \subseteq \{0, 1\}^*$. Explain your answer.

Solution. An infinite language L which distinguishes x and y is $L = \{0^n \mid n \geq 0\}$: choosing $z = \varepsilon$ we have $xz = x \in L$ and $yz = y \notin L$. On the other hand, an infinite language L which does not distinguish x and y is $\{0, 1\}^*$: for this, it is obvious that $xz, yz \in L$ for any string z.

(c) Show that for any language L, \equiv_L is an equivalence relation (that is, it is reflexive, symmetric, and transitive).

Solution. The relation \equiv_L is reflexive by definition: if x and z are any strings, then clearly we can not have both $xz \in L$ and $xz \notin L$. Similarly, if x, y are strings such that $x \equiv_L y$, then it follows that for all z we have that either $xz, yz \in L$ or $xz, yz \notin L$. From this it immediately follows that $y \equiv_L x$, and so the relation is symmetric.

Finally, to see transitivity, suppose that $a \equiv_L b$ and $b \equiv_L c$, and we show that $a \equiv_L c$. Let z be any string. Since $a \equiv_L b$, it follows that either both $az, bz \in L$ or $az, bz \notin L$. If both az and bz are in L, then since $b \equiv_L c$ it follows that $cz \in L$, and thus both $az, cz \in L$. On the other hand, if $az, bz \notin L$, then again since $b \equiv_L c$ it follows that $cz \notin L$, and thus both $az, cz \notin L$. Thus $a \equiv_L c$.

3