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Abstract. When a human is mastering a new task, they are usually not limited to exploring the environment, but also avail themselves of advice from other people. In
contrast to constraints, advice is merely a recommendation about how to act that may be of variable quality or incomplete. In this work, we consider the use of advice
expressed in Linear Temporal Logic to guide exploration in a model-based reinforcement learning algorithm. Our experimental results demonstrate the potential for good
advice to significantly reduce the number of training steps needed to learn strong policies, while still maintaining robustness in the face of incomplete or misleading advice.

Motivation

When RL agents learn behavior
• Must explore environment to learn how to act
• This process can be prohibitively expensive

When people learn behavior
• Use different sources of info besides just

experience, including advice from other people
Advice
• Guidance concerning prudent future action
• May be of variable quality or incomplete

Research question: How can an RL agent take ad-
vantage of linguistically expressed advice?
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Figure 1: An example grid-world domain.

Actions: left, right, up, down
Rewards: door +1000; nail -10; step -1
MDP:M = 〈S , s0, A, γ,T,R〉

Model-Based RL

Idea: estimate T and R from experience (by counting).

R̂(s, a) =
1

n(s, a)

n(s,a)∑
i=1

ri T̂ (s′|s, a) =
n(s, a, s′)

n(s, a)

• Compute π̂∗(a|s) using R̂(s, a) and T̂ (s′|s, a).
• Execute an action following π̂∗(a|s).
• Update T̂ , R̂, and n, and repeat.

R-MAX: if n(s, a) < m, then assume R̂(s, a) = Rmax

A Language for Advice

Linear Temporal Logic (LTL) extends propositional
logic with the following temporal operators: next (©ϕ),
always (�ϕ), eventually (^ϕ), and until (ϕ1 Uϕ2).

The following formulae state “get to the key and then
the door" and “always avoid the nails", respectively:

^(at(key) ∧©^(at(door))) (1)

�(∀(x ∈ nails).¬at(x)) (2)

From LTL to NFAs

Any LTL formula can be transformed into an equivalent
set of Non-Deterministic Finite Automatons (NFAs).

u1u0 u2
{at(key)}

{true} {true}{true}

{at(door)}

v0 v1
{∀(n ∈ nails).¬at(n)}

{∀(n ∈ nails).¬at(n)}

Figure 2: NFAs for advice formulas (1) and (2).

Advice-Based Exploration

Our method turns advice into a way to guide explo-
ration. To do so, we need to address two problems.

Problem 1: Communicating with the agent.

We use a signature Σ to define the predicates and con-
stants that can be referred to when giving advice. A
labelling function L identifies what is true in any state.

e.g. at(c) ∈ L(s)

Problem 2: Satisfying a given advice formula.

The agent uses a background knowledge function,
hB : S × A× literals(Σ)→ N, to estimate the number of
actions needed to make a literal true.

e.g. hB(s, a, at(c)) and hB(s, a,¬at(c))

We extend this estimate to formulae as follows:

h : S × A × LΣ → N

• h(s, a, `) = hB(s, a, `) for ` ∈ literals(Σ)
• h(s, a, ψ ∧ χ) = max{h(s, a, ψ), h(s, a, χ)}
• h(s, a, ψ ∨ χ) = min{h(s, a, ψ), h(s, a, χ)}

e.g. h(s, a, at(key1) ∨ at(key2))

ϕ̂ =
∨m

i=0

[∨
(q,Γ,q′)∈δ(i) and (q,q′)∈useful(q(i)) to_DNF(Γ)

]
ϕ̂w =

∧m
i=0

[∨
q∈q(i) and (q,Γ,q′)∈δ(i) to_DNF(Γ)

]
e.g. ϕ̂ = at(key); ϕ̂w = ∀(x ∈ nails).¬at(x)

ĥ(s, a) =

h(s, a, ϕ̂) if h(s, a, ϕ̂w) = 0

h(s, a, ϕ̂) + 1000 otherwise

Experiments with R-MAX

Advice was used in R-MAX as follows. If n(s, a) < m,

R̂(s, a) =

0 ∃(s′, a′) s.t. ĥ(s′, a′) < ĥ(s, a)

Rmax otherwise

This method can substantially improve performance in
deterministic grid-world maps when given advice.

(a) Random maps (b) The nail room
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Figure 3: Results using advice in R-MAX.

Abbreviation Advice formula (and informal meaning)
C ∀(c ∈ cookies).^at(c)

Get all the cookies.
NH �(∀(x ∈ nails ∪ holes).¬at(x))

Avoid nails and holes.
K ∀(k ∈ keys).^(at(k))

Get all the keys.
KD ∀(k ∈ keys).^(at(k) ∧©^(∃(d ∈ doors).at(d)))

For every key, get it and then go to a door.
Adversarial ∀(n ∈ nails).^at(n)

Step on every nail.

Figure 4: Advice formulae used in our experiments.

Experiments with MBIE-EB

Advice can also be used provided to MBIE-EB [1].

Q̂init(s, a) =
Rmax

1 − γ
(1 − α) + (−ĥ(s, a))α

Q̂∗(s, a) =
β

√
n(s, a)

+ R̂(s, a)(1 − α) + (−1)α+

γ
∑

s′ T̂ (s′|s, a) maxa′ Q̂∗(s′, a′)

This algorithm was also shown to benefit from advice,
in stochastic grid-world environments.
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Figure 5: Results in the stochastic nail room.

Previous Work

Maclin & Shavlik (1996)

• IF An Enemy IS (Near and West) AND
An Obstacle IS (Near and North)
• MULTIACTION: MoveEast, MoveNorth

Maclin et al. (2005)
• IF (dist_goalcenter <= 15) AND

(angle_goalcenter_you_goalie >= 25)
• THEN PREFER Shoot TO Pass

Krening et al. (2016)

• (Koopa, fireball), (Coin, JumpRight), ...

Conclusion

Our approach can use LTL advice to reduce the train-
ing required while being robust to misleading advice.

Future work

• Learn the background knowledge function.

• Extend to non-discrete domains.
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