
Symbolic Planning and Model-Free Reinforcement Learning:
Training Taskable Agents

León Illanes
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

lillanes@cs.toronto.edu

Xi Yan
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

xi.yan@mail.utoronto.ca

Rodrigo Toro Icarte
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

rntoro@cs.toronto.edu

Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

sheila@cs.toronto.edu

Abstract

We investigate the use of explicit symbolic action models, as typically used for Automated Planning, in the context of
Reinforcement Learning (RL). Our objective is to make RL agents more sample efficient and human taskable. We say
an agent is taskable when it is capable of achieving a variety of different goals and there is a simple method for goal
specification. Moreover, we expect taskable agents to easily transfer skills learned for one task to other related tasks.
To these ends, we consider high-level models that inexactly represent the low-level environment in which an agent
acts. Given a model, defining goal-directed tasks is a simple problem, and we show how to communicate these goals
to an agent by leveraging state-of-the-art symbolic planning techniques. We automatically generate families of high-
level solutions and subsequently represent them as a reward machine, a recently introduced formalism for describing
structured reward functions. In doing this, we not only specify what the task at hand is, but also give a high-level
description of how to achieve it. The structure present in this description can be successfully exploited by a Hierarchical
RL system. The reward machine represents a collection of sequential solutions and can be used to prune the options
available when training. We can ensure that, at every step, the meta-controller can only select options that represent
advancement in some high-level plan.

We empirically demonstrate the merits of our approach, comparing to a naive baseline where a single sequential plan is
strictly followed, and to standard Hierarchical RL techniques. Our results show that the approach is an effective method
for specifying tasks to an RL agent. Given adequately pretrained options, our approach reaches high-quality policies in
previously unseen tasks in extremely few training steps and consistently outperforms the standard techniques.

Keywords: Reinforcement Learning
Hierarchical Reinforcement Learning
Goal Specification
Automated Planning
Symbolic Planning

Acknowledgements

We gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC),
Becas Chile (CONICYT), and Microsoft Research.

Paper # 198 191



1 Introduction
Reinforcement learning (RL) techniques allow for agents to perform tasks in complex domains, where environment
dynamics and reward structures are initially unknown. These techniques are based on performing random exploration,
observing the dynamics and reward returned by the environment, and synthesizing an optimal policy that maximizes
expected cumulative reward. Unfortunately, when reward is sparsely distributed, as is the case in many applications,
RL techniques can suffer from poor sample efficiency, requiring millions of episodes to learn reasonable policies. Further,
these systems are typically not taskable: specifying new tasks is often difficult and the skills that are learned for one
task are not easily transferred to others. Over the years a number of approaches have been proposed to address these
shortcomings including efforts to learn hierarchical representations or to define options, a form of macro-action that can
be used by the RL system [9] .

Our interest in this paper is in leveraging high-level symbolic planning models and automated plan synthesis techniques,
in concert with state-of-the-art RL techniques, with the objective of significantly improving sample efficiency and creating
systems that are human taskable. Our efforts are based on the observation that some approximated understanding of the
environment can be characterized as a symbolic planning model—a set of properties of the world and actions that cause
those properties to change in predictable ways.

Recent research has demonstrated the benefit of providing high-level instructions to an RL system to improve sample
efficiency (e.g., policy sketches [1]). Nevertheless, these instructions must be manually generated. By using a symbolic
model of the environment rather than a task-specific set of instructions we are able to automatically generate instructions
in the form of one or more sequential or partial order plans—the latter compactly characterizing a multitude of sequential
plans. We represent these plans as a structured reward function in the form of an automata-inspired reward machine [10].
This reward machine is then used to enhance a Hierarchical Reinforcement Learning (HRL) system by ignoring options
that—based on inspection of the machine’s structure—cannot result in future reward.

We compare our approach to standard forms of HRL and to a naive baseline algorithm. Our results show that the
approach is an effective method for specifying tasks to an RL agent, reaching high-quality policies for previously unseen
tasks in extremely few training steps.

2 Related Work
The options framework [9] has become a well-known standard approach for exploiting temporal abstraction in Rein-
forcement Learning. A key contribution of our work is the way in which we use explicit symbolic planning to select
adequate options.

Other existing approaches have used symbolic planning to select options or macro-actions. An early approach proposed
using a symbolic planner coupled into an RL agent [2]. There, the planner produces an initial high-level plan and is
subsequently used to replan when the plan’s preconditions are violated. A related approach uses a sequential plan to
modify the reward via reward shaping [3]. In contrast to these approaches, our system uses planners to produce a single
structured reward function that represents the task at hand. Our approach is orthogonal to the idea of reward shaping,
and we believe that it may be applied in our setting.

Recent work has also proposed methods based on coupling a planner to an RL agent [11, 7]. There, the focus has been
on two-way communication between agent and planner to continuously improve the high-level model and find better
high-level solutions. In our case, we assume an adequate high-level model is given and we show how to exploit it. Other
work has explored techniques for automatically building such abstractions [6, 5]. Integrating such techniques into our
work may prove to be an interesting direction for future work.

Finally, there has also been work that has focused on learning explicit state-transition systems that represent high-level
models [12]. With these, standard graph search algorithms can be used to find sequences of macro-actions. Our work
considers implicit state-transition systems described as classical planning domains. This allows us to consider highly
combinatorial problems that are far too large to represent explicitly.

3 Preliminaries
For the purposes of this work, we will say that the environment in which an RL agent acts is formalized as a tuple
E = �S,A, p�, where S is its set of states, A is the set of available actions, and p(st+1 | st, at) is the transition probability
distribution. A policy is defined as a probability distribution π(a | s) that establishes the probability of the agent taking
action a given that its current state is s.

For defining tasks, we consider a recently introduced reward mechanism known as reward machines [10]. A reward
machine is a finite-state machine that can be used to specify temporally-extended and non-Markovian reward functions.
The intuitive idea is that transitions in the reward machine take place based on observations made by the agent about
the environment, and that the reward depends on the transitions taken in the machine. The observations are represented
by a set of propositional symbols P , which correspond to facts that the agent may perceive. For a given environment, we

1

Paper # 198 192



assume there is a labeling function L : S → 2P that establishes what is perceived when reaching a state. Then, a reward
machine for environment E and observation propositions P is given by the tuple R = �U, u0, δu, δr�. U is its set of states,
u0 is its initial state, δu : U × 2P → U is its state transition function, and δr : U × U → R is its reward transition function.
Whenever the agent makes a transition (s, a, s�) in the environment and observes P ⊆ P , the current state in the reward
machine is updated from u to u� = δu(u, P ). At this point, the agent receives reward δr(u, u

�).

Temporal Abstraction in RL The options framework proposes the use of policies that are trained for achieving specific
high-level behaviours, coupled with well-defined termination criteria for their application [9]. An agent acting within
this framework can choose, at every step, to either apply a low-level action or to apply one of these high-level options.
We use a simplistic notion of option defined as a pair o = �πo, To�, where πo is the corresponding policy and To ⊆ S is a
set of states that the policy is intended to reach and that will be used as the option’s termination criterion.

Symbolic Planning We specify planning domains in terms of a tuple D = �F,A�. F is a set of propositional symbols,
called the fluents of D, and A is the set of planning actions in the domain. Planning states are specified as subsets of F ,
so that state S ⊆ F represents the situation in which the fluents in S are all true and those not in S are false. Actions are
specified in terms of their preconditions and effects, which are given as logical formulae over the propositional fluents.
Actions are only applicable in states where their preconditions are satisfied, and such application results in a transition
to a state where the action’s effects are true, and everything else remains unchanged.

A planning task is described by an initial state and a goal condition. The goal is given as a formula over the fluents of
the domain. Any state that satisfies the goal condition is said to be a goal state. A sequence of actions Π = [a0, a1, . . . , an]
is known as a sequential plan for a task when it is possible to sequentially apply the actions starting at the initial state,
and doing so reaches a goal state. Given a plan Π = [a0, a1, . . . , an], we will refer to its prefix with respect to action ai as
prefix(Π, ai) = [a0, a1, . . . , ai−1].

A D

CB
�

�

�✻

✻ ✻

✻ ✻

✻�

Figure 1: The OFFICEWORLD.

Partial-order plans generalize sequential plans by relaxing the ordering condition
over the actions. A partial-order plan is a tuple Π =

�
A,≺

�
, where A is its set of

action occurrences and ≺ is a partial order over A. The set of linearizations of Π,
denoted Λ(Π), is the set of all sequences of the action occurrences in A that respect
the partial order ≺. Any linearization Π ∈ Λ(Π) is a sequential plan for the task.
Intuitively, a partial-order plan represents a family of related sequential plans.

Running Example We consider a version of the OFFICEWORLD domain de-
scribed by Toro Icarte et al. [10]. The low-level environment is represented by
the grid displayed in Figure 1. An agent situated in any cell can try to move in
any of the four cardinal directions, succeeding only if the movement does not go
through a wall. The symbols in the grid represent events that can be perceived
by the agent: it picks up coffee or mail when it reaches the locations marked with
blue cups or the green envelope, respectively, or it can deliver what it picked up
by reaching the office, marked by the purple writing hand, etc. The locations marked ✻ are places the agent must not
step on. The four additional named locations (A, B, C, D) can also be recognized by the agent. An example of a task is
that of delivering both mail and coffee to the office. For this task, any optimal policy will need to choose whether to get
the coffee or mail first depending on the agent’s initial position.

4 Planning Models in RL
Given a low-level environment E = �S,A, p� and the set of associated symbols P that represent possible observations, a
symbolic model for E is specified as M = �D,α�, where D = �F,A� is a planning domain and α : A → 2P is a function
that associates planning actions with sets of observations.

Note that the symbols in F do not directly map to the observations, and that they can therefore be used to model state
properties that cannot be directly perceived in the low-level environment. In the OFFICEWORLD running example, some
of the symbols in F represent state properties that are non-Markovian in the low-level environment, such as the set of
locations that were visited in the past, and whether or not the agent is carrying coffee or mail.

Note that one of the key properties of automated planning systems based on symbolic models is that specifying indi-
vidual tasks is a very simple problem. We take advantage of this by enabling the description of such tasks—goals in the
symbolic models—to be communicated to an RL agent.

From Symbolic Planning Actions to Options Given an environment E and a corresponding symbolic model M, we
can define a set of options that represents relevant transitions that can occur in M. For every planning action a ∈ A,
we build a target set Ta comprised of all the low-level states in which every observation associated with a is perceived.
Formally, this is defined in terms of L−1, the preimage of the labeling function: Ta = L−1(α(a)) ⊆ S. Then, the set of
options can be defined as O(M) = {�πa, Ta� | a ∈ A}, where every πa is a policy trained specifically for reaching the
states in Ta. Note that two or more actions in A may produce the same target set and be represented by a single option.

2

Paper # 198 193



From Plans to Meta-Controllers We propose that a good way of communicating the high-level tasks to the agent
is not in terms of the goals of the task, but rather in terms of high-level plans that achieve them. This allows us to
specify tasks that are non-Markovian from the perspective of the low-level environment, such as delivering coffee in the
OFFICEWORLD, while simultaneously enabling a natural form of task decomposition.

To actually give a specific high-level plan to an RL agent, we will design a simple reward machine that directly represents
the execution of the plan. Reward of 1 will be given only upon completing this execution.

• U = {u0, u1, . . . , un+1}
• δr(ui, uj) =�

1 if i = n and j = n+ 1

0 in any other case

• δu(ui, P ) =�
ui+1 if P = α(ai)

ui in any other case

(a) Reward machine based on a sequential plan Π =
[a0, a1, . . . , an].

• U = 2A, u0 = ∅

• δr(ui, uj) =

�
1 if uj = A
0 in any other case

• δu(u, P ) =



u ∪ {a} if ∃a ∈ A,Π ∈ Λ(Π),
s.t. u = prefix(Π, a)

and P = α(a)

u in any other case

(b) Reward machine based on a partial-order plan
Π =

�
A,≺

�
.

Figure 2: Reward machines defined by plans.

For a sequential plan Π = [a0, a1, . . . , an], the implementation of the
corresponding reward machine is very straightforward and shown in
Figure 2a. If instead of a sequential plan we consider a partial-order
plan Π =

�
A,≺

�
, we need a reward machine that effectively repre-

sents all possible orderings of the plan, in a way that any execution of
one of them results in receiving a reward of 1 only on the last step. We
build this machine by including one state for every possible subset of
A. This ensures that the machine’s executions correctly keep track of
which actions have already taken place. Note that some of these states
will not be reachable. In practice, we will only generate the states as
needed. The possible transitions will be defined by explicitly consid-
ering Λ(Π), as described in Figure 2b.

Note that the given definition of δu does not necessarily imply a func-
tion. Consider two actions a, b ∈ A such that P = α(a) = α(b), that
is, actions that result in the same observations. In the OFFICEWORLD,
an action to simply visit the office achieves the same event as the ac-
tion to deliver coffee. Now, if there are two linearizations of Π, Πa

and Πb, such that u = prefix(Πa, a) = prefix(Πb, b), then either action
could be used in the definition of δu(u, P ). In such cases, we arbitrarily
choose which of the actions to use, as either choice represents a valid
linearization of Π.

From Reward Machines to Meta-Controllers Given an environment
E and a symbolic model M = �D,α�, we want to leverage the set
of options O(M) to efficiently find a low-level policy for achieving a
high-level goal g defined in terms of D. A naive approach consists
of finding a sequential plan for g and then attempting to execute the
corresponding options in order. A more flexible approach is to learn
a meta-controller over the options while using the plan only to spec-
ify the reward function. The latter approach also allows the use of a
partial-order plan, resulting in a less restrictive reward.

Our third and main approach combines the flexibility of partial-order
plans with the simplicity of naively following a plan. Effectively, we
train a meta-controller that is a priori restricted to only select among options that correspond to actions that are reasonable
within the context of a partial-order plan. In practice, this means that the meta-controller is limited to selecting options
that can advance the reward machine toward its goal, an idea introduced by Toro Icarte et al. as a simple way of exploiting
the structure in a reward machine [10] .

5 Empirical Evaluation

We evaluated our approach by considering two different low-level environments and respective high-level symbolic
models. In each case, we defined a set of option candidates using the approach outlined in Section 4. We subsequently
pretrained these options, and finally evaluated our approach on a number of new tasks for each environment. For each
task we computed sequential and partial-order plans, and built the corresponding reward machines. We compare our
results against the use of the same pretrained options in a standard HRL framework, and against the naive approach
outlined above. In all cases, the training was done through the Q-learning algorithm.

The first test environment is the OFFICEWORLD running example. Here the high-level actions include visiting any of
the named locations, getting coffee, getting mail, delivering either coffee or mail to the office, and delivering both coffee
and mail to the office. This results in options for going to any of the named locations or to the office, and for getting
coffee and getting mail. The actions for delivering to the office are all mapped to the same observation, which occurs
whenever the agent reaches the office, and therefore correspond to the same option. For this environment, we tested on
tasks consisting of 6 different goals and 10 random initial states for each goal.

3

Paper # 198 194



0 10K 20K 30K 40K 50K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRL(seq)
HRL(pop)

HRL(restr)

(a) OFFICEWORLD

0 100K 200K 300K 400K 500K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRL(seq)
HRL(pop)

HRL(restr)

(b) MINECRAFTWORLD

Figure 3: Experimental performance
obtained on previously unseen tasks.

Our second environment is the Minecraft-inspired gridworld described by An-
dreas et al. [1]. The grid contains raw materials (e.g., wood, iron) and loca-
tions where the agent can combine materials to produce refined materials (e.g.,
wooden planks), tools (e.g., hammer), and goods (e.g., goldware). The high-
level actions allow for collecting each of the raw materials, and for achieving
the combinations. The types of tasks that we evaluated on include examples
such as “build a bridge” or “have a hammer and a pickaxe”. We ran experiments
on 10 different maps, 10 different final-state goals, and 4 random initial states
for each combination of map and goal.

In both environments, we pretrained options by generating a small set of ran-
dom initial states. We simultaneously trained a single policy for each option.
The experience observed when training for any given option was used for
training all other options, in an off-policy learning setting. This pretraining
was restricted to a small number of reinforcement learning steps. In each in-
dependent experiment, option policies were continuously refined as the agent
continued to interact with the environment.

We used the Fast Downward planning system [4] to quickly produce high-
quality sequential plans. To get partial-order plans, we relaxed the sequential
plans by solving a mixed integer linear program, following Muise et al. [8].

Results and Discussion We report the results for the OFFICEWORLD and
MINECRAFTWORLD environments in Figures 3a and 3b. Each graph displays
the performance obtained after training with the labeled algorithm for the
specified number of steps. HRL(restr) refers to our main approach; HRL(seq)
and HRL(pop) refer to the standard HRL approach, respectively using the re-
wards specified by the sequential and partial-order plans. In all cases, we
report the normalized median discounted reward (using discount γ = 0.9)
obtained on all tasks and several independent trials. We also show the me-
dian quintile performance (shaded area). Rewards were normalized by the
best value obtained for each task across all independent experiments.

The aim of our experiments was to validate our approach as a method for
easily solving unseen tasks. In particular, they show how by just having pretrained options and a high-level plan, we
could obtain high-quality policies for the new tasks with little extra learning. Our results were positive and show that the
approaches that restrict which options can be used based on the actions presented by the plan produced good policies
after very few training steps. The naive method quickly reached a plateau in its performance; but even when compared
to this, the other methods we tested needed up to an order of magnitude more training steps to reach comparable results.
Our main approach significantly outperformed all other approaches, even after a large number of training steps.

To conclude, we believe that the automatic generation of goal-relevant options and ordering constraints over them—in
conjunction with the ability to explicitly represent them in a structured reward function—is one of the key aspects that
will enable RL systems to be both taskable and scalable. Moreover, we believe that symbolic planning and knowledge
representation techniques can provide the ideal framework for generating such options and constraints. Planning for-
malisms and algorithms support a plethora of different domain and solution properties, such as temporally-extended
goals, preferences, diverse plans, numeric constraints, and more. All of these could be used for representing rich rein-
forcement learning tasks, while preserving useful structure that can be exploited when learning policies.

References
[1] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy sketches. In ICML, volume 70 of PMLR, pages 166–175, 2017.

[2] M. J. Grounds and D. Kudenko. Combining reinforcement learning with symbolic planning. In AAMAS III, volume 4865 of LNCS, pages 75–86, 2008.

[3] M. Grześ and D. Kudenko. Plan-based reward shaping for reinforcement learning. In IS, volume 2, pages 10-22–10-29, 2008.

[4] M. Helmert. The Fast Downward planning system. JAIR, 26:191–246, 2006.

[5] S. James, B. Rosman, and G. Konidaris. Learning to plan with portable symbols. In PAL@ICML/IJCAI/AAMAS, 2018.

[6] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez. From skills to symbols: Learning symbolic representations for abstract high-level planning. JAIR, 61:215–289, 2018.

[7] D. Lyu, F. Yang, B. Liu, and S. Gustafson. SDRL: interpretable and data-efficient deep reinforcement learning leveraging symbolic planning. In AAAI, 2019.

[8] C. J. Muise, J. C. Beck, and S. A. McIlraith. Optimal partial-order plan relaxation via MaxSAT. JAIR, 57:113–149, 2016.

[9] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. AIJ, 112(1-2):181–211, 1999.

[10] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using reward machines for high-level task specification and decomposition in reinforcement learning.
In ICML, volume 80 of PMLR, pages 2112–2121, 2018.

[11] F. Yang, D. Lyu, B. Liu, and S. Gustafson. PEORL: integrating symbolic planning and hierarchical reinforcement learning for robust decision-making. In IJCAI, pages
4860–4866, 2018.

[12] A. Zhang, S. Sukhbaatar, A. Lerer, A. Szlam, and R. Fergus. Composable planning with attributes. In ICML, volume 80 of PMLR, pages 5837–5846, 2018.

4

Paper # 198 195


