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Abstract

Reward Machines (RMs), originally proposed for specifying prob-

lems in RL, provide a structured, automata-based representation

of a reward function that allows an agent to decompose problems

into subproblems that can be efficiently learned using off-policy

learning. Here we show that RMs can be learned from experience,

instead of being specified by the user, and that the resulting prob-

lem decomposition can be used to effectively solve partially ob-

servable RL problems. We pose the task of learning RMs as a dis-

crete optimization problem where the objective is to find an RM

that decomposes the problem into a set of subproblems such that

the combination of their optimal memoryless policies is an opti-

mal policy for the original problem. We show the effectiveness

of this approach on three partially observable domains, where it

significantly outperforms A3C, PPO, and ACER.

The Cookie Domain
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Task: Eat as many cookies as possible before the timeout.

• The agent ( ) can move in the four cardinal directions.

• The button ( ) causes a cookie ( ) to randomly appear.

• The cookie might appear in the red ( ) or blue ( ) room.

• The agent receives a +1 reward for eating a cookie.

• Pressing before reaching will randomly move it.

• There is no cookie at the beginning of the episode.

• The agent can only see what it is in the current room.

Note: A3C, PPO, and ACER with LSTMs could not solve this task.

Motivation

Why is the cookie domain so challenging for Deep RL agents?

• It requires understanding of long-term dependencies.

• Solving this problems requires two levels of reasoning.

Low-level: learning policies for navigating the map.

High-level: reasoning about memory at the level of objects.

Idea: Let’s give the agent a set of high-level binary classifiers to

detect—from the current observation—the color of the room ( ,

, , ), whether it sees a cookie ( ), and whether it just ate a

cookie ( ) or pressed the button ( ).

Can we do better now?

Reward Machines (RMs)

RMs are automata-based representations of a reward function

that allow RL agents to learn policies faster [1].
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RMs start at state u0 and moves according to the edges. Each edge

has an if-like condition over high-level detectors and a reward.

Learning policies given an RM:

• Standard: Learn a policy π(a |o , u ) that selects the action a

considering the current observation o and RM state u .

• QRM: Learn one policy per RM state and improve each

policy in parallel using off-policy learning.

Main contributions

1. First approach for learning RMs from experience.

2. Extending RMs to work under partial observability.

3. Developing a theory for 1 and 2.

Learning Reward Machines

Problem setting: Find a policy that maximizes the collected ex-

ternal reward given by a partially observable environment E .

Assumptions: The agent has access to a set of high-level binary

classifiers (e.g., P = { , , , , , , } for the cookie domain).

Key insight: Learn an RM such that its internal state can be effec-

tively used as external memory by the agent to solve the task.
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(a) Naive RM.
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(b) Perfect RM.

Example: The states from the “perfect RM" keep track of the possi-

ble location of the cookies—which is relevant for solving the task.

Perfect Reward Machines
Perfect RMs make the environment Markovian w.r.t. O ×U , i.e.:

Pr(ot+1, rt+1|o0, a0, . . . , ot , at ) = Pr(ot+1, rt+1|ot , ut , at )

for every possible trace o0, a0, . . . , ot , at generated by any policy.

Properties: Given an environment E : (i) If the set of belief states

of E is finite, then there exists a perfect RM for E , and (ii) Optimal

policies over O ×U for perfect RMs are also optimal for E .

How to Learn Perfect Reward Machines
Ideally: For every possible RM; collect a set of traces, fit a predic-

tive model for Pr(o ′, r |o , u , a ), and pick the RM that makes better

predictions. This is prohibitively expensive.

Alternative: Optimize over the necessary condition that perfect

RMs must correctly predict—at least—what is possible and im-

possible in the environment at the level of the binary classifiers.
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In the paper: We formalized the previous idea as a combinatorial

optimization problem and solved it using Tabu search.

Learning RMs and Policies

1. Collect a training set T composed of random traces.

2. Learn an RM using T .

3. Learn policies for the learned RM using RL.

4. If the RM predictions are incorrect, augment T and goto 2.

Experiments
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(a) Symbol domain.
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(b) 2-keys domain.

Approaches
LRM +DQRM (ours) DDQN A3C Optimal

LRM +DDQN (ours) ACER PPO

Note: The binary classifiers were used by all the approaches.

Cookie Domain Results
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Symbol Domain Results
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2 Keys Domain Results
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Summary of the Results
• Our LRM approaches outperform the baselines.

• DQRM pays off in domains with sparse rewards.

• LRM works because Tabu search finds high-quality RMs.

Discussion
This work represents a building block for creating RL agents that

can solve cognitively challenging partially observable tasks. RM

learning provided the agent with memory, but more importantly

with discrete reasoning capabilities that operated at a higher level

of abstraction (i.e., Tabu search) while leveraging deep RL’s ability

to learn policies from low-level inputs (i.e., DQRM).
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