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About this work

“To summarize, a nice simple idea exposing more of the
structure of an RL problem and the benefits thereof.”

— Third reviewer
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Reinforcement learning
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Reinforcement learning
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— > | Transition Probabilities
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The environment might be the real world.
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Running example

Meaning
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Agent
Furniture
Coffee machine
Mail room
Office
Marked locations
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Running example

Symbol Meaning
B * * C
m A Agent
L 3
3k Furniture
# o X % - Coffee machine
X Mail room
Ht .
A . AD o Office .
A,B,C,D Marked locations

Task: Patrol A, B, C, and D.
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Symbol Meaning
B * * C
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L 3
3k Furniture
# o X % - Coffee machine
X Mail room
Ht .
A . AD o Office .
A,B,C,D Marked locations

Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Running example

1im = 0 # global variable
B " i C 2| def get_reward(s):
" 3 if m == 0 and s.at("A"):
- 4 m =1
5 if m == 1 and s.at("B"):
6 m = 2
° = 7 if m == 2 and s.at("C"):
8 m = 3
- 9 if m == 3 and s.at("D"):
10 m = 0
A g A D 11 return 1
12 return O

Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Running example
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o 5 Reward Function
b
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Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Running example
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Running example

o B Reward Function

Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Running example
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Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Running example

B C
s
o = AT Reward Function
/
= P
A i D

Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Task: Patrol A, B, C, and D.

Someone has to program a reward function
(even if the environment is the real world).
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Task: Patrol A, B, C, and D.

Someone has to program a reward function
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Running example

B s C
o 5 A Reward Function
H*
A £ D

What if we give the agent access to the reward function?
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Running example

m = 0 # global variable

def get_reward(s):

"
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10 m = 0
11 return 1

2 return O

if m == 0 and s.at("A"):

1 and s.at("B"):

2 and s.at("C"):

3 and s.at("D"):

What if we give the agent access to the reward function?
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Running example

m = 0 # global variable
B " 2| def get_reward(s):
m if m == 0 and s.at("A"):
- m =1
if m == 1 and s.at("B"):
m = 2
° = if m == 2 and s.at("C"):
m = 3
- if m == 3 and s.at("D"):
10 m = 0
A g * D 11 return 1
2 return O

What if we give the agent access to the reward function?

Is there any advantage of doing do?
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Running example

m = 0 # global variable
2| def get_reward(s):

10 m = 0
A * * D 11 return 1

2 return O

if m == 0 and s.at("A"):

1 and s.at("B"):

2 and s.at("C"):

if m == 3 and s.at("D"):

What if we give the agent access to the reward function?

Is there any advantage of doing do?
The agent can exploit the reward structure!
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The simple idea

Environment

—————>| Transition Probabilities

RL Agent

action

Policy —
state
Reward Function

reward

How to exploit the reward function definition

RMs: A novel language to define reward functions.
QRM: An RL algorithm that exploits RM'’s structure.
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Reward machines

We encode reward functions using a finite state machine.
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Reward machines

We encode reward functions using a finite state machine.

(-A.0)
ijlm = 0 # global variable
2| def get_reward(s):
3 if m == 0 and s.at("A"):
4 m =1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"): D0 (-B,0)
8 m =3
9 if m == 3 and s.at("D"):
10 m = 0
11 return 1
12 return O
(=C.0)
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Reward machines

(=A,0)

A reward machine

(-D,0) (-B,0)

(-C,0)
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Reward machines

(=A,0)

A reward machine
A finite set of states U

(-D,0) (-B,0)

(-C,0)
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Reward machines

A reward machine
A finite set of states U

(-B,0)

(-C,0)
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Reward machines

(=A,0)

A reward machine

A finite set of states U

An initial state ug € U

(-D,0) (-B,0)

(-C,0)
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Reward machines

(=A,0)

A reward machine

A finite set of states U
An initial state ug € U
A set of transitions labelled by:

(-D,0) (-B,0)

(-C,0)
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Reward machines
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A reward machine

A finite set of states U 0
An initial state up € U (-D.0) (-B.0)
A set of transitions labelled by:
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Reward machines
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An initial state ug € U
A set of transitions labelled by:
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Reward machines

A reward machine

A finite set of states U
An initial state ug € U
A set of transitions labelled by:

(=D, 0) (~B,0)

m a logical condition and

(-C,0)
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Reward machines

A reward machine

A finite set of states U
An initial state ug € U
A set of transitions labelled by:

(-B,0)

m a logical condition and

(-C,0)

Conditions are over properties of the current state:

P = {%,=,0,%, A B,C,D}
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Reward machines

(=A,0)

A reward machine

A finite set of states U
An initial state ug € U
A set of transitions labelled by:

(-B,0)

m a logical condition and

m a reward function.

(-C,0)

Conditions are over properties of the current state:

P = {%,=,0,%, A B,C,D}
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Reward machines

(=A.0)
A simple reward machine

A finite set of states U
An initial state ug € U
A set of transitions labelled by:

(-B,0)

m a logical condition and

m a reward (constant number).

(-C,0)

Conditions are over properties of the current state:
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Reward machines in action
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Reward machines in action

(-C,0)
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Reward machines in action
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Reward machines in action
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Reward machines in action

(-C,0)
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Reward machines in action
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Reward machines in action
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Reward machines in action
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Reward machines in action

(=A,0)

W v

(-C,0)

%1 Computer Science
¥ UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 9/33




Reward machines in action

(=A,0)

o = (=D.0)

(-C,0)

%1 Computer Science
¥ UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 9/33




Reward machines in action

(=A,0)

2 Computer Science
% UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 9/33




Reward machines in action

(=A,0)

2 Computer Science
% UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 9/33




Reward machines in action
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Other reward machines

Task: Deliver coffee to the office.

(—0,0) (true, 0)
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Other reward machines

Task: Deliver coffee to the office.
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Other reward machines

Task: Deliver coffee to the office.

(—w,0) (—0,0) (true, 0)

(s, 0) A (0, 1)
—>{ Ug u u
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Other reward machines
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Reward machines might define non-Markovian rewards.
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Solution (qg-learning baseline)

Include the RM state to the agent's state representation.
Learn policies using standard g-learning.
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Hierarchical RL baseline

HRL baseline

Learn meta-controller over a set of options (macro-actions).
Define one option per proposition in the RM's transitions.
Optimize 7; to satisfy i optimally.
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Hierarchical RL with RM pruning baseline

HRL-RM baseline

Prune useless options using the current reward machine state.
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Hierarchical RL with RM pruning baseline
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Prune useless options using the current reward machine state.
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Hierarchical RL might converge to suboptimal policies
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QRM (our approach)

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

2. Select actions using the policy
of the current RM state.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

2. Select actions using the policy
of the current RM state.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

2. Select actions using the policy
of the current RM state.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

2. Select actions using the policy
of the current RM state.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

2. Select actions using the policy
of the current RM state.

%1 Computer Science
UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 19 /33




Q-learning for Reward Machines (QRM)
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Q-learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-function)
per state in the reward machine.

2. Select actions using the policy
of the current RM state.

3. Reuse experience to update all
the g-values at the same time.
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QRM learning step
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QRM learning step
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QRM learning step
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QRM learning step
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QRM converges to an optimal policy in the limit.
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Experiments

Two discrete grid domains:
m Office domain (4 tasks).
m Craft domain (10 tasks).
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Two discrete grid domains:
m Office domain (4 tasks).
m Craft domain (10 tasks).

One continuous state space domain:
m Water domain (10 tasks).
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The craft domain
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Continuous domains

From tabular QRM to Deep QRM

We replaced g-learning by Double DQN with prioritized experience
replay in our four approaches.
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We replaced g-learning by Double DQN with prioritized experience
replay in our four approaches.
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Lot of relations between QRM and HRL (more in the paper!)
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Concluding remarks

We proposed to show the reward function’s code to the agent

B C
0 5 A Reward Function
Hi
A s & D

E-
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Concluding remarks

so it can exploit the reward’s structure.

m = 0 # global variable
e e 2| def get_reward(s):
B l | C s/ if m == 0 and s.at("A"):
- 4 m =1
A 5 if m == 1 and s.at("B"):
. . 6 m = 2
° ° = / 7 if m == 2 and s.at("C"):
A» 8 m = 3
™ 9 if m == 3 and s.at("D"):
10 m = 0
A ® * D 11 return 1
2 return O

2 Computer Science
% UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 32/33




Concluding remarks

To define reward functions, we used reward machines

(=A,0)
B C
3 o < % (-B,0)
A‘,é
™
A : D

(=C,0)
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Concluding remarks

. and showed how to decompose the problem using QRM.

B * C
i
sk [e) X B (=D, 0) (=B, 0)
2
H'A)
A £ D

(=C, 0>
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Concluding remarks

QRM outperformed plain RL and HRL in 2 discrete domains.

Office World

Normalized discounted reward

Minecraft World

Normalized discounted reward

Number of training steps
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Concluding remarks

and was also effective when combined with deep learning.

Water World

2
@ &d 3 Legend:
O E — DDQN
Q 3 DHRL
@@ ;: — DHRL-RM

X — DQRM
g
o
=2

! el

0
0 5-10° 1-10° 1.5-10° 2-10°
Number of training steps

2 Computer Science
% UNIVERSITY OF TORONTO Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 32 /33




Title: Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning

Code: https://bitbucket.org/RToroIcarte/qrm

Poster: #147

¥ Computer Science
UNIVERSITY OF TORONTO

Toro Icarte et al: Using RMs for Task Specification and Decomposition in RL 33/33



	Motivation
	Reward Machines
	Q-Learning for Reward Machines
	Results
	Related Work
	Conclusion

