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Abstract. In this paper we propose Reward Machines – a type of finite state machine that supports the specification of reward functions while exposing reward function structure to the learner and supporting decomposition. We then present Q-Learning for Reward Machines (QRM), an algorithm which appropriately decomposes

the reward machine and uses off-policy q-learning to simultaneously learn subpolicies for the different components. QRM is guaranteed to converge to an optimal policy in the tabular case, in contrast to Hierarchical Reinforcement Learning methods which might converge to suboptimal policies. We demonstrate this behavior

experimentally in two discrete domains. We also show how function approximation methods like neural networks can be incorporated into QRM, and that doing so can find better policies more quickly than hierarchical methods in a domain with a continuous state space.
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Symbol Meaning
Agent

[ Furniture
K Coffee machine
B Mail room
o Office

A, B, C, D Marked locations

Motivation

Task: Patrol A, B, C, and D.

Steps to solve the task using RL:

• Someone programs a reward function.

• The learning agent gets the reward function as a black box.
1 m = 0 # global variable
2 def get_reward (s):
3 if m == 0 and s.at("A"):
4 m = 1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"):
8 m = 3
9 if m == 3 and s.at("D"):

10 m = 0
11 return 1
12 return 0

1 m = 0 # global variable
2 def get_reward (s):
3 if m == 0 and s.at("A"):
4 m = 1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"):
8 m = 3
9 if m == 3 and s.at("D"):

10 m = 0
11 return 1
12 return 0

Reward Function

What if we give the agent access to the reward function’s code?

Advantage: The agent can exploit the reward structure! How?

What is a Reward Machine (RM)?

Idea: We encode reward functions using a finite state machine.

1 m = 0 # global variable
2 def get_reward (s):
3 if m == 0 and s.at("A"):
4 m = 1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"):
8 m = 3
9 if m == 3 and s.at("D"):

10 m = 0
11 return 1
12 return 0
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A reward machine consists of the following elements:

• A finite set of states U .

• An initial state u0 ∈U .
• A set of transitions, each labelled by:

• a logical condition over properties of the state (e.g. at A, B,K,B, ...)

• and a reward function.

After each move in the environment, an RM makes the transition

whose logical condition is satisfied by the environment state, and

rewards the agent according to that transition’s reward function.

Reward Machines in Action
This RM starts in u0 and transitions to u1 when A is reached. The

agent gets a reward of 0 from that transition’s reward function.

A D

CB
K

K

B[

[ [

[ [

[o

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

s

0

Positive reward is given only when the agent completes a cycle.
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Other Examples of Reward Machines

Deliver coffee to the office.

u0 u1 u2
〈K, 0〉

〈¬K, 0〉

〈o, 1〉

〈¬o, 0〉 〈true, 0〉

Deliver coffee to the office

while avoiding the furniture.

u0 u1 u2
〈K, R[〉

〈¬K, R[〉

〈o, R O
[ 〉

〈¬o, R[〉 〈true, R[〉

where R[ = −1 iff the agent is at [ (zero
otherwise) and R O

[ is like R[ but also gives
a reward of 1 when the office is reached.

Deliver coffee and the mail to

the office.

u0

u1 u2

u3 u4

〈K, 0〉

〈¬K∧¬B, 0〉

〈B, 0〉

〈¬B, 0〉

〈o, 1〉

〈¬o, 0〉

〈B, 0〉

〈K, 0〉

〈¬K, 0〉

〈true, 0〉

Deliver coffee to the office

while avoiding the furniture.

u0 u1

u2

u3
〈K∧¬[, 0〉

〈¬K∧¬[, 0〉

〈[, 0〉

〈o, 1〉

〈¬o∧¬[, 0〉

〈¬o∧[, 0〉

〈true, 0〉

〈true, 0〉

How to exploit an RM’s structure

First idea (q-learning baseline)
Reward machines might produce non-Markovian rewards w.r.t.

the environment states. To solve this, we add the RM state to the

agent’s state representation and use q-learning.

Second idea (HRL baseline)
Use the RM to extract options and learn using Hierarchical RL.

πA πB πC πD

Meta-Controller

A D

CB
K

K

B[

[ [

[ [

[o

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

Third idea (HRL-RM baseline)
Use the RM to also prune useless options.
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Problem: Hierarchical RL might converge to suboptimal policies!
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Our final method (QRM)
• Learn one policy (q-function) per state in the RM.

• Select actions using the policy of the current RM state.

• Reuse experience to update all the q-values at the same time.
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Q-updates

q0(s , a )
α←− 0+γmaxa ′q0(s ′, a ′) q2(s , a )

α←− 0+γmaxa ′q2(s ′, a ′)
q1(s , a )

α←− 0+γmaxa ′q1(s ′, a ′) q3(s , a )
α←− 1+γmaxa ′q0(s ′, a ′)

Theorem: QRM converges to an optimal policy in the limit.

Code (coming soon at): bitbucket.org/RToroIcarte/qrm

Results

Discrete Domains
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Legend: Q-Learning HRL HRL-RM QRM

Continuous Domains

Deep QRM uses DDQN with prioritized experience replay.

5 ·105 1 ·106 1.5 ·106 2 ·106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
o

rm
al

iz
ed

d
is

co
u

n
te

d
re

w
ar

d Water World

Legend: DDQN DHRL DHRL-RM DQRM

Conclusion

“To summarize, a nice simple idea exposing more of the

structure of an RL problem and the benefits thereof."

— Third reviewer

bitbucket.org/RToroIcarte/qrm

