Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

Rodrigo Toro Icarte††, Taryn Q. Klassen†, Richard Valenzano§, Sheila A. McIlraith††

†Department of Computer Science, University of Toronto †Vector Institute §Element AI

†{mtoro, taryn, sheila}@cs.toronto.edu, ††rock.valenzano@elementai.com

Abstract. In this paper we propose Reward Machines—a type of finite state machine that supports the specification of reward functions while exposing reward function structure to the learner and supporting decomposition. We then present Q-Learning for Reward Machines (QRM), an algorithm which appropriately decomposes the reward machine and uses off-policy q-learning to simultaneously learn subpolicies for the different components. QRM is guaranteed to converge to an optimal policy in the tabular case, in contrast to Hierarchical Reinforcement Learning methods which might converge to suboptimal policies. We demonstrate this behavior experimentally in two discrete domains. We also show how function approximation methods like neural networks can be incorporated into QRM, and that doing so can find better policies more quickly than hierarchical methods in a domain with a continuous state space.

Running Example

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>△</td>
<td>Agent</td>
</tr>
<tr>
<td>⊗</td>
<td>Furniture</td>
</tr>
<tr>
<td>●</td>
<td>Coffee machine</td>
</tr>
<tr>
<td>◆</td>
<td>Mail room</td>
</tr>
<tr>
<td>O</td>
<td>Office</td>
</tr>
<tr>
<td>A, B, C, D</td>
<td>Marked locations</td>
</tr>
</tbody>
</table>

Motivation

Task: Patrol A, B, C, and D.

Steps to solve the task using RL:

- Someone programs a reward function.
- The learning agent gets the reward function as a black box.

Reward Function

What if we give the agent access to the reward function's code? **Advantage:** The agent can exploit the reward structure! How?

What is a Reward Machine (RM)?

Idea: We encode reward functions using a finite state machine.

A reward machine consists of the following elements:

- A finite set of states \(U \).
- An initial state \(u_0 \in U \).
- A set of transitions, each labelled by:
 - a logical condition over properties of the state (e.g. \(a \in A, B, \square, \neg, \ldots \))
 - and a reward function.

After each move in the environment, an RM makes the transition whose logical condition is satisfied by the environment state, and rewards the agent according to that transition’s reward function.

Rewards Machines in Action

This RM starts in \(u_0 \) and transitions to \(u_4 \), when A is reached. The agent gets a reward of 0 from that transition's reward function.

Second idea (HRL baseline)

Use the RM to extract options and learn using Hierarchical RL.

Third idea (HRL-RM baseline)

Use the RM to also prune useless options.

Problem: Hierarchical RL might converge to suboptimal policies!

Our final method (QRM)

- Learn one policy (q-function) per state in the RM.
- Select actions using the policy of the current RM state.
- Reuse experience to update all the q-values at the same time.

Theorem: QRM converges to an optimal policy in the limit.

Code (coming soon at): bitbucket.org/RToroIcarte/qrm

Results

Continuous Domains

Deep QRM uses DDQN with prioritized experience replay.

Discrete Domains

Office World

Minecraft World

Third reviewer