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Hi, I’m Rodrigo :)

“The ultimate goal of AI is to create computer programs
that can solve problems in the world as well as humans.”

— John McCarthy

Our research incorporates insights from knowledge, reasoning, and learning,
in service of building general-purpose agents.
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How to enhance RL with KR



Reinforcement Learning (RL)

Long-standing RL problems that we tackled using KR:

Reward specification.

Sample efficiency.

Memory.

...
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Make a bridge: get wood, iron, and use the factory

LTL specifications1:
3(got wood ∧ 3used factory) ∧ 3(got iron ∧
3used factory)

Reward machines2:
Automata-based reward functions

1 Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18).

2 Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18).
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Reward specification

Make a bridge: get wood, iron, and use the factory

LTL specifications1:
3(got wood ∧ 3used factory) ∧ 3(got iron ∧
3used factory)

Reward machines2:
Automata-based reward functions

Formal languages3:
Many formal languages → Reward machines.

1 Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18).
2 Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18).

3 LTL and Beyond: Formal Languages for Reward Function Specification in RL (IJCAI-19).
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Reward machine

u0start u1

u2 u3

〈w, 0〉

〈¬w ∧ ¬i, 0〉

〈i, 0〉

〈¬i, 0〉

〈f, 1〉

〈¬f, 0〉

〈¬w ∧ i, 0〉

〈w, 0〉
〈¬w, 0〉 How to exploit the reward machine’s structure:

CRM: Counterfactual reasoning.

HRM: Task decomposition.

RS: Reward shaping.
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The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.
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Reward Machines as memory

If the agent can detect the color of the rooms ( , , , ), and when it presses the
button ( ), eats a cookie ( ), and sees a cookie ( ), then:

B0

B1 B2B3

〈o/w, 0〉

〈o/w, 0〉 〈o/w, 0〉〈o/w, 0〉

〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 1〉〈 , 1〉

... becomes a “perfect” memory for the cookie domain.

Learning Reward Machines for Partially Observable Reinforcement Learning (NeurIPS-19).
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Cookie domain
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∗Note: The detectors were also given to the baselines.
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If you are interested in KR ∩ RL, consider reading our papers:

Advice-Based Exploration in Model-Based Reinforcement Learning (Canadian AI-18)
Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18)
Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18)
LTL and Beyond: Formal Languages for Reward Function Specification in RL (IJCAI-19)
Learning Reward Machines for Partially Observable RL (NeurIPS-19)

Symbolic Plans as High-Level Instructions for Reinforcement Learning (ICAPS-20)

Code: https://bitbucket.org/RToroIcarte/

Thanks! :)

https://bitbucket.org/RToroIcarte/
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