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Our research incorporates insights from knowledge, reasoning, and learning,
in service of building general-purpose agents.
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This learning process captures some aspects of human intelligence.
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Reinforcement Learning (RL)




How to enhance RL with KR



Reinforcement Learning (RL)

Long-standing RL problems that we tackled using KR:
m Reward specification.
m Sample efficiency.
m Memory.
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Reward specification

Make a bridge: get wood, iron, and use the factory

LTL specifications!:
O(got_wood A Qused_factory) A O(got_iron A
Oused_factory)

Reward machines?:
Automata-based reward functions

Formal languages®:
Many formal languages — Reward machines.

I Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18).
2 Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18).

3 LTL and Beyond: Formal Languages for Reward Function Specification in RL (1JCAI-19).
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Reward machine

How to exploit the reward machine’s structure:

m CRM: Counterfactual reasoning.
m HRM: Task decomposition.
m RS: Reward shaping.
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The most popular approach:
Training LSTMs policies using a policy gradient method.

. starves in the cookie domain.
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Reward Machines as memory

If the agent can detect the color of the rooms (0,0, M, ), and when it presses the
button (©), eats a cookie (&), and sees a cookie (@), then:

{o/w,0) (O,0); (o/w,0) (B,0); (o/w,0)

... becomes a “perfect” memory for the cookie domain.



Reward Machines as memory

If the agent can detect the color of the rooms (0,0, M, ), and when it presses the
button (©), eats a cookie (&), and sees a cookie (@), then:

{o/w,0) (O,0); (o/w,0) (B,0); (o/w,0)

... becomes a “perfect” memory for the cookie domain.

Learning Reward Machines for Partially Observable Reinforcement Learning (NeurlPS-19).
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*Note: The detectors were also given to the baselines.
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Thanks! :)
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