Learning Reward Machines for Partially Observable Reinforcement Learning

Rodrigo Toro Icarte Ethan Waldie Toryn Q. Klassen Richard Valenzano Margarita P. Castro Sheila A. McIlraith

ELEMENT^{AI}

KR 2020 September 16

Hi, I'm Rodrigo :)

Hi, I'm an Al researcher

Hi, I'm an Al researcher

"The ultimate goal of AI is to create computer programs that can solve problems in the world as well as humans." — John McCarthy

Hi, I'm an Al researcher

"The ultimate goal of AI is to create computer programs that can solve problems in the world as well as humans." — John McCarthy

Our research incorporates insights from **knowledge**, **reasoning**, and **learning**, in service of building general-purpose agents.

RL Agent Policy

Environment

Transition Probabilities

Reward Function

This learning process captures some aspects of human intelligence.

Reinforcement Learning (RL)

Reinforcement Learning (RL)

How to enhance RL with KR

Long-standing RL problems that we tackled using KR:

- Reward specification.
- Sample efficiency.
- Memory.
- ...

Reward specification

LTL specifications¹: $(got_wood \land \Diamond used_factory) \land \Diamond (got_iron \land \Diamond used_factory)$

¹ Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18).

LTL specifications¹: $(got_wood \land \Diamond used_factory) \land \Diamond (got_iron \land \Diamond used_factory)$

Reward machines²: Automata-based reward functions

 1 Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18).

 2 Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18).

Reward machine

Make a bridge: get wood, iron, and use the factory

LTL specifications¹:

 \diamond (got_wood $\land \diamond$ used_factory) $\land \diamond$ (got_iron $\land \diamond$ used_factory)

Reward machines²: Automata-based reward functions

Formal languages³: Many formal languages \rightarrow Reward machines.

¹ Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18).

² Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18).

³ LTL and Beyond: Formal Languages for Reward Function Specification in RL (IJCAI-19).

Sample efficiency

How to exploit the reward machine's structure:

- **CRM**: Counterfactual reasoning.
- **HRM**: Task decomposition.
- **RS**: Reward shaping.

Sample efficiency

Sample efficiency

Memory

(+1 Reward)

The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.

Reward Machines as memory

If the agent can detect the color of the rooms (\Box, \Box, \Box, \Box) , and when it presses the button (\bigcirc) , eats a cookie (\bigcirc) , and sees a cookie (\bigcirc) , then:

... becomes a "perfect" memory for the cookie domain.

Reward Machines as memory

If the agent can detect the color of the rooms (\Box, \Box, \Box, \Box) , and when it presses the button (\bigcirc) , eats a cookie (\bigcirc) , and sees a cookie (\bigcirc) , then:

... becomes a "perfect" memory for the cookie domain.

Learning Reward Machines for Partially Observable Reinforcement Learning (NeurIPS-19).

*Note: The detectors were also given to the baselines.

Summary

Advice-Based Exploration in Model-Based Reinforcement Learning (Canadian Al-18) Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18) Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18) LTL and Beyond: Formal Languages for Reward Function Specification in RL (IJCAI-19) Learning Reward Machines for Partially Observable RL (NeurIPS-19) Symbolic Plans as High-Level Instructions for Reinforcement Learning (ICAPS-20)

Advice-Based Exploration in Model-Based Reinforcement Learning (Canadian AI-18) Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18) Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18) LTL and Beyond: Formal Languages for Reward Function Specification in RL (IJCAI-19) Learning Reward Machines for Partially Observable RL (NeurIPS-19) Symbolic Plans as High-Level Instructions for Reinforcement Learning (ICAPS-20)

Code: https://bitbucket.org/RToroIcarte/

Advice-Based Exploration in Model-Based Reinforcement Learning (Canadian AI-18) Teaching Multiple Tasks to an RL Agent using LTL (AAMAS-18) Using Reward Machines for High-Level Task Specification and Decomposition in RL (ICML-18) LTL and Beyond: Formal Languages for Reward Function Specification in RL (IJCAI-19) Learning Reward Machines for Partially Observable RL (NeurIPS-19) Symbolic Plans as High-Level Instructions for Reinforcement Learning (ICAPS-20)

Code: https://bitbucket.org/RToroIcarte/

Thanks! :)