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Overview

• We propose using reward machines (RMs) as a normal

form representation for reward functions.

• LTL formulas and other regular languages can be used to

specify reward-worthy behavior that is automatically

converted into RMs (via DFAs).

• RM structure can be exploited by Q-learning (QRM) and

automated reward shaping to learn policies faster,

solving problems that cannot reasonably be solved otherwise.

What is reinforcement learning (RL)?
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Example Reward-worthy behavior
• Do not vacuum while someone is sleeping

Always[¬ (vacuum ∧ sleeping)]

• If the sign points right then turn right at the intersection

Always[right→ Eventually[intersection→ turn(right)]]

• While there are dirty dishes on the counter, load them into

the dishwasher.

While ∃x.dish(x) ∧ on(x,Counter) ∧ dirty(x) do

pickup(x); load(x,Dishwasher)

End while

Challenge: represent the above behavior as a reward function –

R (s , a )→R. Typically done by a programmer via Python code.

What is a Reward Machine (RM)?
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Symbol Meaning
Agent

[ Furniture
K Coffee machine
B Mail room
o Office

A, B, C, D Marked locations

Task: Patrol A, B, C, and D.

Reward Machines
Idea: Encode reward functions using finite state machines.

Idea: The vocabulary, P , can be (but need not be) abstracted

and human-understandable, realized via low-level event, prop-

erty, or feature detectors. E.g.,P = {K,B, o ,[, A, B , C , D }.

1 m = 0 # global variable
2 def get_reward (s):
3 if m == 0 and s.at("A"):
4 m = 1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"):
8 m = 3
9 if m == 3 and s.at("D"):

10 m = 0
11 return 1
12 return 0
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Reward Machines (RM) are Mealy machines where the input al-

phabet is the set of possible labels and the output alphabet is a

set of reward functions. They consist of the following elements:

• A finite set of states U .

• An initial state u0 ∈U .
• A set of transitions, each labelled by:

• a logical condition defined over the vocabulary

• and a reward function.

Reward Machines in Action
This RM starts in u0 and transitions to u1 when A is reached.

The agent gets reward 0 from that transition’s reward function.
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Positive reward is given only when the agent completes a cycle.
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RMs as a normal form
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Example: “Get coffee and bring it to the office."

LTL: Eventually[K ∧ Next [Eventually o ]]

RM:

u0 u1 u2
〈K, 0〉

〈¬K, 0〉

〈o, 1〉

〈¬o, 0〉 〈true, 0〉

Merit:

• Specify reward-worthy behavior in language(s) of choice –

RM serves as lingua franca. Behaviors composable.

• Exploit reward function structure without multiple

language-specific learning algorithms.

How to exploit an RM’s structure

Idea: Give the RM-specified reward function to RL algorithms

and tailor learning to the function structure.

Cross-product baseline
RMs can produce non-Markovian rewards, but we can add the

RM state to the agent’s state representation and use q-learning:

• Observe state 〈s , u〉 and execute action a ∼π(a |〈s , u〉).
• Observe next state 〈s ′, u ′〉 and the reward r .

• Improve policy π using experience 〈〈s , u〉, a , r, 〈s ′, u ′〉〉.
• 〈s , u〉← 〈s ′, u ′〉.

(1) QRM (Q-learning for Reward Machines)

• Observe state 〈s , u〉 and execute action a ∼π(a |〈s , u〉).
• Observe next state 〈s ′, u ′〉 and the reward r .

• Improve policy π using 〈〈s , ui 〉, a , ri j , 〈s ′, u j 〉〉 for all ui ∈U .

• 〈s , u〉← 〈s ′, u ′〉.

A D

CB
K

K

B[

[ [

[ [

[o

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

π←〈〈s , u0〉,move_right, 0, 〈s ′, u0〉〉
π←〈〈s , u1〉,move_right, 0, 〈s ′, u1〉〉
π←〈〈s , u2〉,move_right, 0, 〈s ′, u2〉〉
π←〈〈s , u3〉,move_right, 1, 〈s ′, u0〉〉

Theorem: QRM converges to an optimal policy in the limit.

(2) Automated Reward Shaping
Idea: Treat the RM as a deterministic MDP, and use value itera-

tion to determine the value of each state. Then, use these values

to define potentials for potential-based reward shaping.
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〈o ∧ ¬[, 2.0〉
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Theorem: Optimal policies are preserved.

Results

**Note**: Impressive gain over (deep) Q-learning (blue).

Discrete Domains
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Legend: Q-Learning QRM QRM + RS

Continuous Domains
Deep QRM uses DDQN with prioritized experience replay.
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Legend: DDQN DQRM DQRM + RS

See also

Code: bitbucket.org/RToroIcarte/qrm
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