
LTL and Beyond: Formal Languages for
Goal Specification in Reinforcement Learning

Alberto Camacho†‡ Rodrigo Toro Icarte†‡ Toryn Q. Klassen†

Richard Valenzano§ Sheila A. McIlraith†‡

†Department of Computer Science, University of Toronto ‡Vector Institute §Element AI
†{acamacho, rntoro, toryn, sheila}@cs.toronto.edu, §rick.valenzano@elementai.com

Overview

• We propose using reward machines (RMs) as a normal

form representation for reward functions.

• LTL formulas and other regular languages can be used to

specify reward-worthy behavior that is automatically

converted into RMs (via DFAs).

• RM structure can be exploited by Q-learning (QRM) and

automated reward shaping to learn policies faster,

solving problems that cannot reasonably be solved otherwise.

What is reinforcement learning (RL)?

Environment

Transition Probabilities

Reward Function

RL Agent

Policy

reward
action

state

Reward Specification

Example Reward-worthy behavior
• Do not vacuum while someone is sleeping

Always[¬ (vacuum ∧ sleeping)]

• If the sign points right then turn right at the intersection

Always[right→ Eventually[intersection→ turn(right)]]

• While there are dirty dishes on the counter, load them into

the dishwasher.

While ∃x.dish(x) ∧ on(x,Counter) ∧ dirty(x) do

pickup(x); load(x,Dishwasher)

End while

Challenge: represent the above behavior as a reward function –

R (s , a)→R. Typically done by a programmer via Python code.

What is a Reward Machine (RM)?

Running Example

A D

CB
K

K

B[

[[

[[

[o

Symbol Meaning
Agent

[Furniture
K Coffee machine
B Mail room
o Office

A, B, C, D Marked locations

Task: Patrol A, B, C, and D.

Reward Machines
Idea: Encode reward functions using finite state machines.

Idea: The vocabulary, P , can be (but need not be) abstracted

and human-understandable, realized via low-level event, prop-

erty, or feature detectors. E.g.,P = {K,B, o ,[, A, B , C , D }.

1 m = 0 # global variable
2 def get_reward (s):
3 if m == 0 and s.at("A"):
4 m = 1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"):
8 m = 3
9 if m == 3 and s.at("D"):

10 m = 0
11 return 1
12 return 0

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

Reward Machines (RM) are Mealy machines where the input al-

phabet is the set of possible labels and the output alphabet is a

set of reward functions. They consist of the following elements:

• A finite set of states U .

• An initial state u0 ∈U .
• A set of transitions, each labelled by:

• a logical condition defined over the vocabulary

• and a reward function.

Reward Machines in Action
This RM starts in u0 and transitions to u1 when A is reached.

The agent gets reward 0 from that transition’s reward function.

A D

CB
K

K

B[

[[

[[

[o

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

s

0

Positive reward is given only when the agent completes a cycle.

A D

CB
K

K

B[

[[

[[

[o

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

s

1

RMs as a normal form

Formal Languages RM algorithms

LTL f

$$

PLTL
((

QRM

LDL f
// DFA // Reward

Machine

33

//

**

automated
reward shaping

RE

77

potential
future algorithms?

...

==

Finite-State Automaton

Push-Down Automaton

Linear-Bounded Automaton

Turing Machine

The Chomsky Hierarchy

Example: “Get coffee and bring it to the office."

LTL: Eventually[K ∧ Next [Eventually o]]

RM:

u0 u1 u2
〈K, 0〉

〈¬K, 0〉

〈o, 1〉

〈¬o, 0〉 〈true, 0〉

Merit:

• Specify reward-worthy behavior in language(s) of choice –

RM serves as lingua franca. Behaviors composable.

• Exploit reward function structure without multiple

language-specific learning algorithms.

How to exploit an RM’s structure

Idea: Give the RM-specified reward function to RL algorithms

and tailor learning to the function structure.

Cross-product baseline
RMs can produce non-Markovian rewards, but we can add the

RM state to the agent’s state representation and use q-learning:

• Observe state 〈s , u〉 and execute action a ∼π(a |〈s , u〉).
• Observe next state 〈s ′, u ′〉 and the reward r .

• Improve policy π using experience 〈〈s , u〉, a , r, 〈s ′, u ′〉〉.
• 〈s , u〉← 〈s ′, u ′〉.

(1) QRM (Q-learning for Reward Machines)

• Observe state 〈s , u〉 and execute action a ∼π(a |〈s , u〉).
• Observe next state 〈s ′, u ′〉 and the reward r .

• Improve policy π using 〈〈s , ui 〉, a , ri j , 〈s ′, u j 〉〉 for all ui ∈U .

• 〈s , u〉← 〈s ′, u ′〉.

A D

CB
K

K

B[

[[

[[

[o

u0

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

π←〈〈s , u0〉,move_right, 0, 〈s ′, u0〉〉
π←〈〈s , u1〉,move_right, 0, 〈s ′, u1〉〉
π←〈〈s , u2〉,move_right, 0, 〈s ′, u2〉〉
π←〈〈s , u3〉,move_right, 1, 〈s ′, u0〉〉

Theorem: QRM converges to an optimal policy in the limit.

(2) Automated Reward Shaping
Idea: Treat the RM as a deterministic MDP, and use value itera-

tion to determine the value of each state. Then, use these values

to define potentials for potential-based reward shaping.

q0 q1

q2

q3
〈K ∧ ¬[, 0〉

〈¬K ∧ ¬[, 0〉

〈[, 0〉

〈o ∧ ¬[, 1〉

〈¬o ∧ ¬[, 0〉

〈[, 0〉

〈true, 0〉

〈true, 0〉

-0.9 -1.0

0.0

0.0
〈K ∧ ¬[, 0〉

〈¬K ∧ ¬[, 0.09〉

〈[, 0.9〉

〈o ∧ ¬[, 2.0〉

〈¬o ∧ ¬[, 0.1〉

〈[, 1.0〉

〈true, 0.0〉

〈true, 0.0〉

Theorem: Optimal policies are preserved.

Results

Note: Impressive gain over (deep) Q-learning (blue).

Discrete Domains

A D

CB
K

K

B[

[[

[[

[o

0 10,000 20,000
0

0.2

0.4

0.6

0.8

1

Training steps
N

or
m

al
iz

ed
re

w
ar

d Office World

0 3 · 105 6 · 105
0

0.2

0.4

0.6

0.8

1

Training steps

N
or

m
al

iz
ed

re
w

ar
d Minecraft World

Legend: Q-Learning QRM QRM + RS

Continuous Domains
Deep QRM uses DDQN with prioritized experience replay.

0 1 · 106 2 · 106
0

0.2

0.4

0.6

0.8

1

Training steps

N
or

m
al

iz
ed

re
w

ar
d Water World

Legend: DDQN DQRM DQRM + RS

See also

Code: bitbucket.org/RToroIcarte/qrm

References
[1] Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A. McIlraith. Non-Markovian

rewards expressed in LTL: guiding search via reward shaping. In SOCS, pages 159–160,

2017. A longer version appeared at the First Workshop on Goal Specifications for Rein-

forcement Learning, colocated with ICML/IJCAI/AAMAS (2018).

[2] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIl-

raith. Teaching multiple tasks to an RL agent using LTL. In AAMAS, pages 452–461,

2018.

[3] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIl-

raith. Using reward machines for high-level task specification and decomposition in

reinforcement learning. In ICML, pages 2112–2121, 2018.

bitbucket.org/RToroIcarte/qrm

