LTL and Beyond: Formal Languages for
Goal Specification in Reinforcement Learning A
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Overview Reward Machines in Action
T This RM starts in u, and transitions to #; when A is reached. B sk sk C
» We propose using reward machines (RMs) as a normal The agent gets reward 0 from that transition’s reward function. 4
form representation for reward functions. st 0 52 ke
« LTL formulas and other regular languages can be used to B m G *_— _

specify reward-worthy behavior that is automatically
converted into RMs (via DFAs). k | O < = S
« RM structure can be exploited by Q-learning (QRM) and
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automated reward shaping to learn policies faster, % sk D T — (s, Up),move_right,0,(s’, uy))
solving problems that cannot reasonably be solved otherwise. A T _—— (=C,0) 7 — ({8, u;),move_right,0,(s’, u;))
7 — ({8, u,),move_right,0,(s’, u,))
What is reinforcement learning (RL)? Positive reward is given only when the agent completes a cycle. 7T — (s, us),move_right,1,(s’, uo))
e ———— (—A, 0)
B sk % > Theorem: QRM converges to an optimal policy in the limit.
Environment -
(2) Automated Reward Shaping
Transition Probabilities r 0 > ¢ Idea: Treat the RM as a deterministic MDP, and use value itera-
, - ; tion to determine the value of each state. Then, use these values
Reward Function w| VY , . .
A s s v to define potentials for potential-based reward shaping.
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. RL Agent RMs as a normal form . O | (00)
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Policy Formal Languages RM algorithms
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Reward Sp ecification PLTL& ORM Theorem: Optimal policies are preserved.
_ = Reward automated
LDL DEA Machine \reward shaping Results
Example Reward-worthy behavior RE potential
. Do not vacuum while someone is sleeping future algorithms? **Note**: Impressive gain over (deep) Q-learning (blue).
Always|~ (vacuum A sleeping)] Discrete Domains
o If the sign points right then turn right at the intersection . Office World
Always[ I”ight s Eventu ally[ intersection — turn (I’lght)]] Type 0 — Unrestricted languages Turing Machine g
e laneuaces o B % % C _
« While there are dirty dishes on the counter, load them into Type 1 - Context-Sensitive language: Linear-Bounded Automaton . S 8 2
) .
the dishwasher. Type 2 - Context-Free languages Push-Down Automaton " o = 0 3 0.4
3 1 . o ™ T‘; .
While Jx.dish (X) A on(x, COLU’lteI”) A dll’ly(X) do Type 3 — Regular languages Finite-State Automaton ~ & é 0.2
pickup(x); load(x,Dishwasher) T - S 0 ‘
Apx ok Db Z R0 10,000 20,000
End while { Natural languages : o )
Training steps
Challenge: represent the above behavior as a reward function — [ Minecraft World
R(s,a)— R. Typically done by a programmer via Python code. E
The Chomsky Hierarchy 5
@ o "O
What is a Reward Machine (RM)? Example: “Get coffee and bring it to the office." g
LTL: Eventually[s A Next [Eventually o]] g
o l
Running Example RM: z 5 5
5 P (—e, 0) (~0,0) (true, 0) 0 3:10° 6-10
Symbol Meaning ITraining steps
B = " C A Agent (%,0) A (0,1) :
- o Furniture —( Up >® { U Legend: == QQ-Learning == QRM == QRM + RS
3k 0 = ¥k ® Cottee machine Merit:
l A < Mail room ' Conti D :
A - D 0 Office  Specifty reward-worthy behavior in language(s) of choice — onunuous omains
A B, C, D Marked locations RM serves as lingua franca. Behaviors composable. Deep QRM uses DDQN with prioritized experience replay.
Task: Patrol A, B, C, and D. » Exploit reward function structure without multiple Q scl Water World
<
language-specific learning algorithmes. O O (5 2 0.8
Reward Machines o © 6. = 06
Idea: Encode reward functions using finite state machines. How to exploit an RM’s structure Q % 0.4
Idea: The vocabulary, 22, can be (but need not be) abstracted S — A Q % 0.2
and human-understandable, realized vialow-level event, prop Idea: Give the RM-specified reward function to RL algorithms © Q 0 1-10° 2-10°
erty, or feature detectors. E.g., & = {#,X,0,*#,A,B,C,D}. Training steps

and tailor learning to the function structure.
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im = 0 # global variable
olde et reward(s): o Legend: == DDON == DORM == DQRM + RS
S I e sy Cross-product baseline 5 Q Q Q
| it'm e 1 and s.at("B"). RMs can produce non-Markovian rewards, but we can add the
6 m = 2

if m == wgny; | > DO RM state to the agent’s state representation and use g-learning:
77 if m 2 and s.at("C"): .
| Af m = 8 p q g See also
g M m =0 8 and s.an(inn): « Observe state (s, 1) and execute action a ~ w(al(s, u)).
o rewmem 0 | « Observe next state (s’, u’) and the reward r. Code: bitbucket.org/RTorolcarte/qrm
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Improve policy 7 using experience ((s, u),a, r,(s’, u’)).
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