

UNIVERSITY OF TORONTO

LTL and Beyond: Formal Languages for Goal Specification in Reinforcement Learning

Rodrigo Toro Icarte^{†‡} Toryn Q. Klassen[†] Alberto Camacho^{†‡} Richard Valenzano[§] Sheila A. McIlraith^{†‡}

[†]Department of Computer Science, University of Toronto [‡]Vector Institute [§]Element AI

[†]{acamacho, rntoro, toryn, sheila}@cs.toronto.edu, [§]rick.valenzano@elementai.com

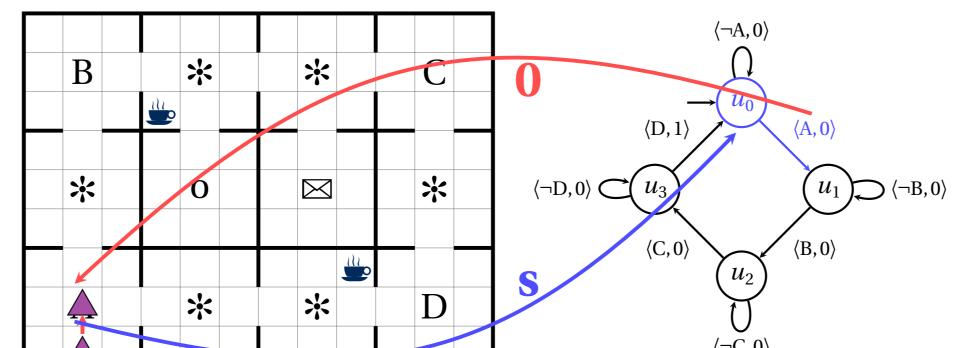
ΑΙ **VECTOR INSTITUTE**

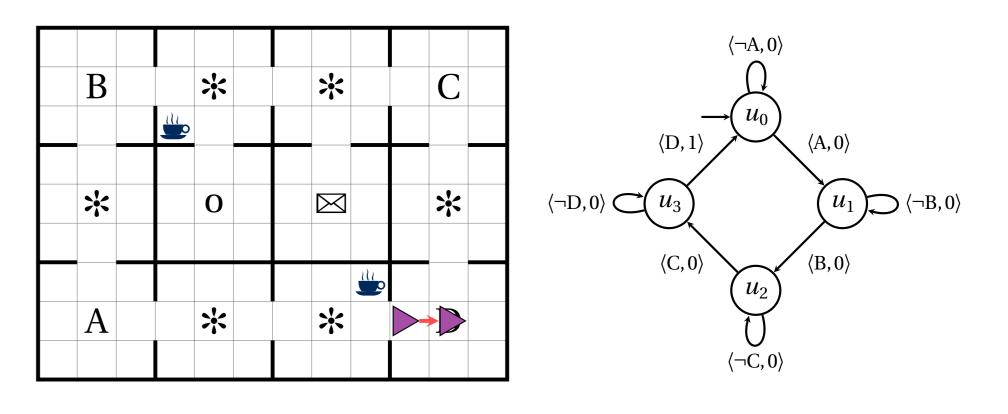
Overview

- We propose using reward machines (RMs) as a normal form representation for reward functions.
- LTL formulas and other regular languages can be used to specify reward-worthy behavior that is automatically converted into RMs (via DFAs).
- RM structure can be exploited by Q-learning (QRM) and automated reward shaping to learn policies faster,

Reward Machines in Action

This RM starts in u_0 and transitions to u_1 when A is reached. The agent gets reward 0 from that transition's reward function.

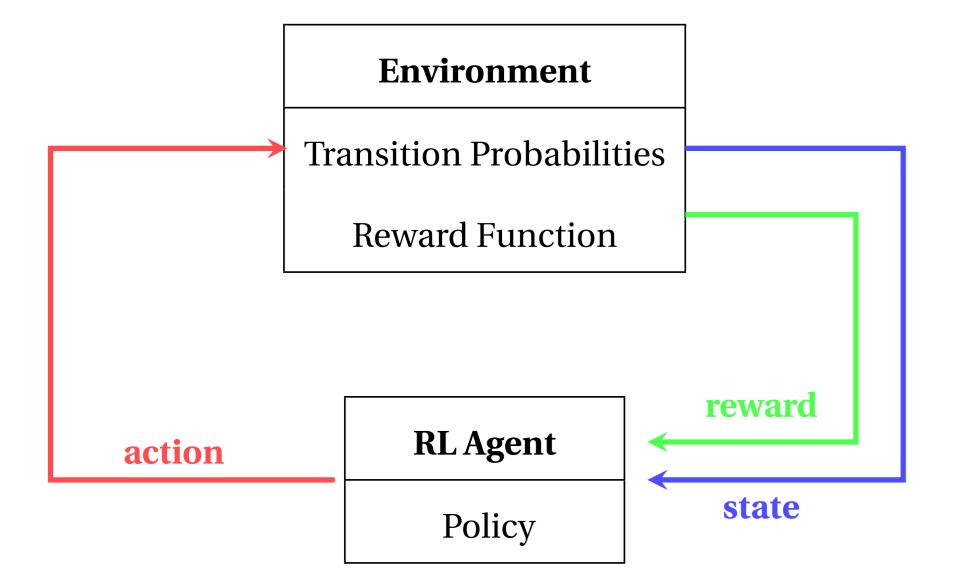




 $\pi \leftarrow \langle \langle s, u_0 \rangle, \text{move}_{right}, 0, \langle s', u_0 \rangle \rangle$

solving problems that cannot reasonably be solved otherwise.

What is reinforcement learning (RL)?



Reward Specification

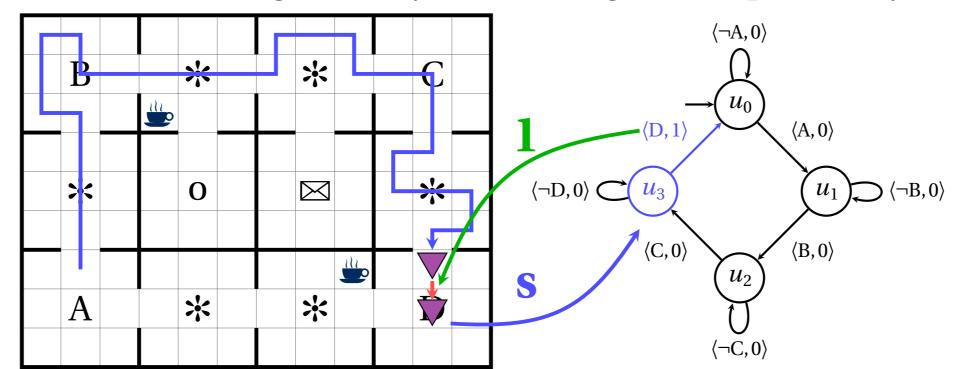
Example Reward-worthy behavior

- Do not vacuum while someone is sleeping Always[\neg (vacuum \land sleeping)]
- If the sign points right then turn right at the intersection Always[$right \rightarrow$ Eventually[$intersection \rightarrow turn(right)$]] • While there are dirty dishes on the counter, load them into the dishwasher.

 $\langle \neg C, 0 \rangle$

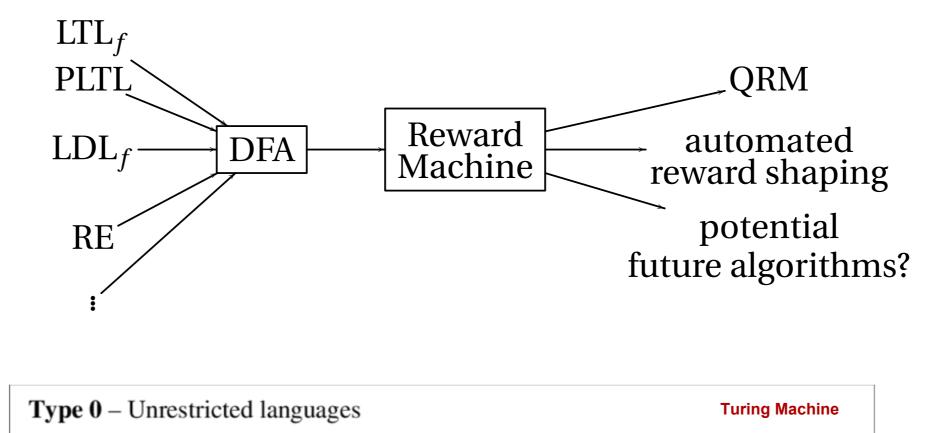
RM algorithms

Positive reward is given only when the agent completes a cycle.



RMs as a normal form

Formal Languages

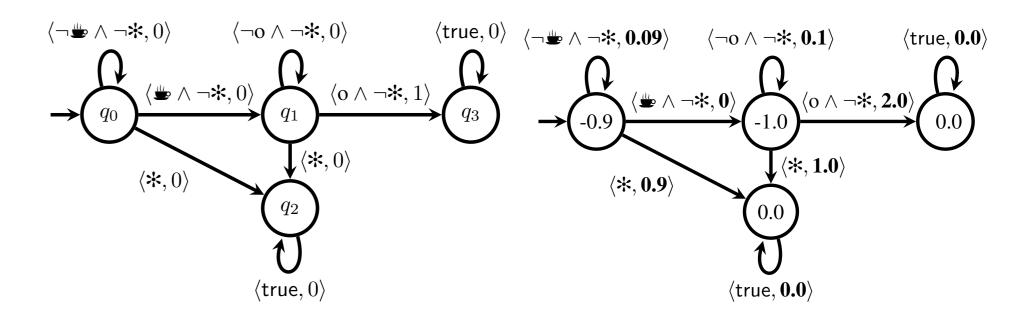


 $\pi \leftarrow \langle \langle s, u_1 \rangle, \text{move_right}, 0, \langle s', u_1 \rangle \rangle$ $\pi \leftarrow \langle \langle s, u_2 \rangle, \text{move}_{right}, 0, \langle s', u_2 \rangle \rangle$ $\pi \leftarrow \langle \langle s, u_3 \rangle, \text{move_right}, 1, \langle s', u_0 \rangle \rangle$

Theorem: QRM converges to an optimal policy in the limit.

(2) Automated Reward Shaping

Idea: Treat the RM as a deterministic MDP, and use value iteration to determine the value of each state. Then, use these values to define potentials for potential-based reward shaping.

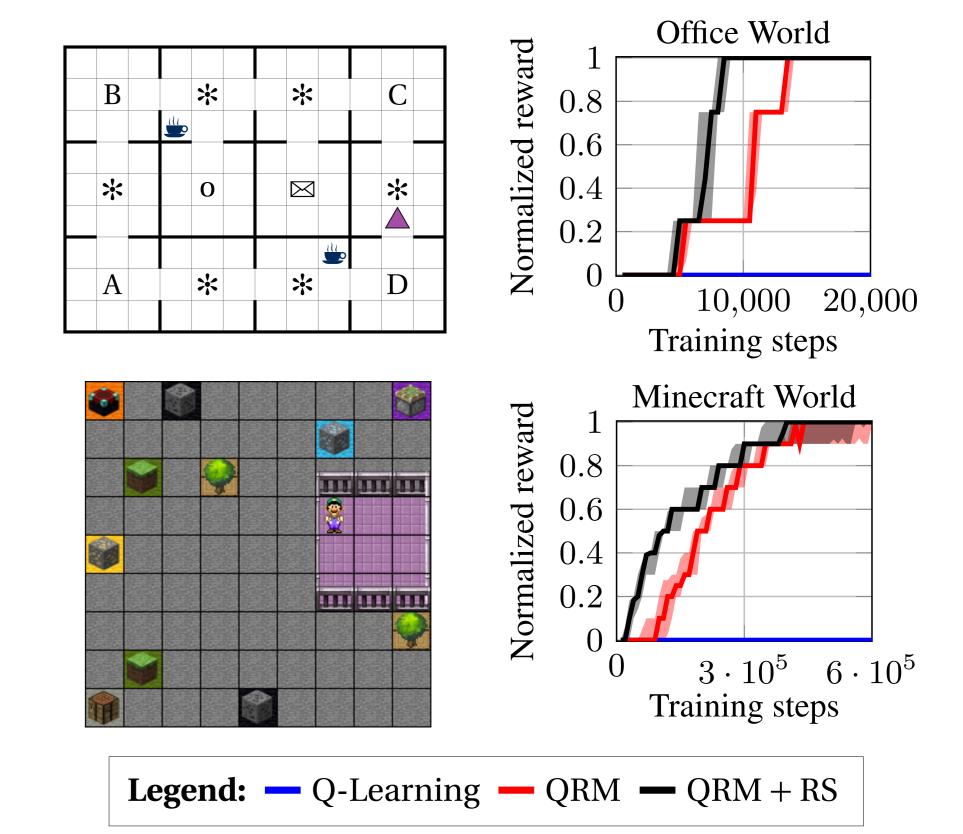


Theorem: Optimal policies are preserved.

Results

****Note****: Impressive gain over (deep) Q-learning (blue).

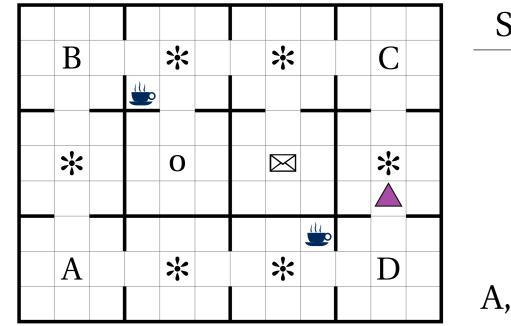
Discrete Domains



- **While** $\exists x.dish(x) \land on(x,Counter) \land dirty(x)$ **do** pickup(x); load(x,Dishwasher)
- **End while**
- **Challenge:** represent the above behavior as a reward function $R(s, a) \rightarrow \mathbb{R}$. Typically done by a programmer via Python code.

What is a Reward Machine (RM)?

Running Example

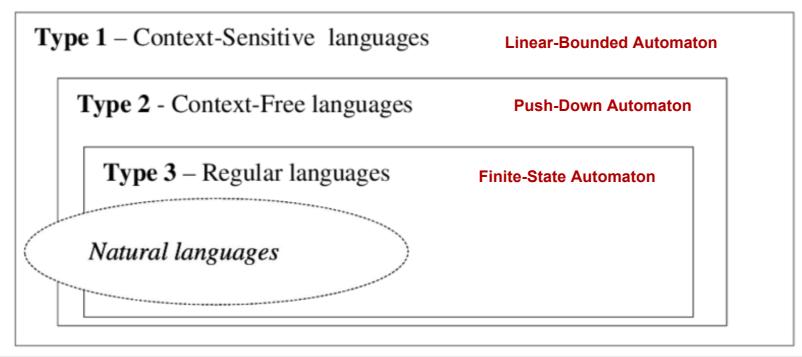


Symbol	Meaning
	Agent
*	Furniture
	Coffee machine
\bowtie	Mail room
0	Office
, B, C, D	Marked locations

Task: Patrol A, B, C, and D.

Reward Machines

Idea: Encode reward functions using finite state machines. **Idea**: The vocabulary, \mathcal{P} , can be (but need not be) abstracted

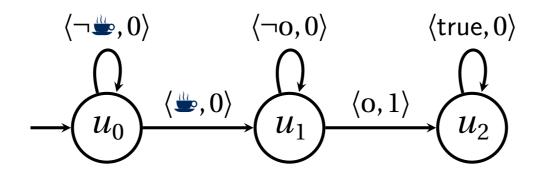


The Chomsky Hierarchy

Example: "Get coffee and bring it to the office."

Eventually $\implies \land$ **Next** [**Eventually** o]] LTL:

RM:



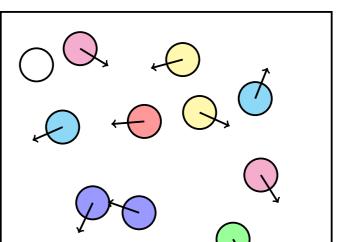
Merit:

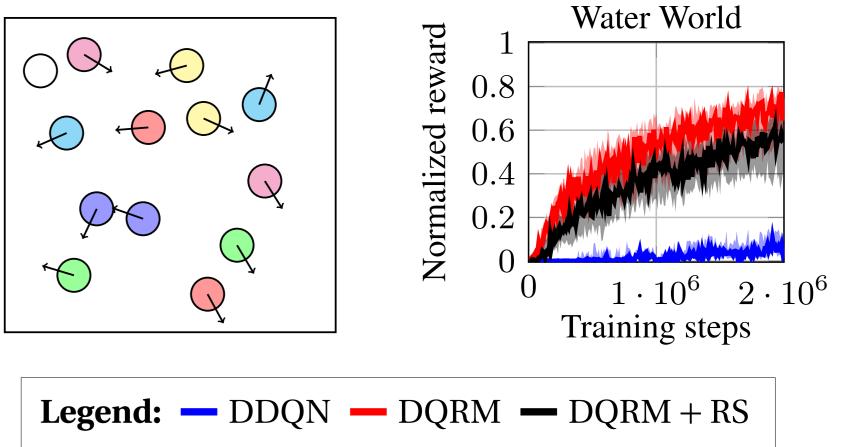
- Specify reward-worthy behavior in language(s) of choice RM serves as lingua franca. Behaviors composable.
- Exploit reward function structure without multiple language-specific learning algorithms.

How to exploit an RM's structure

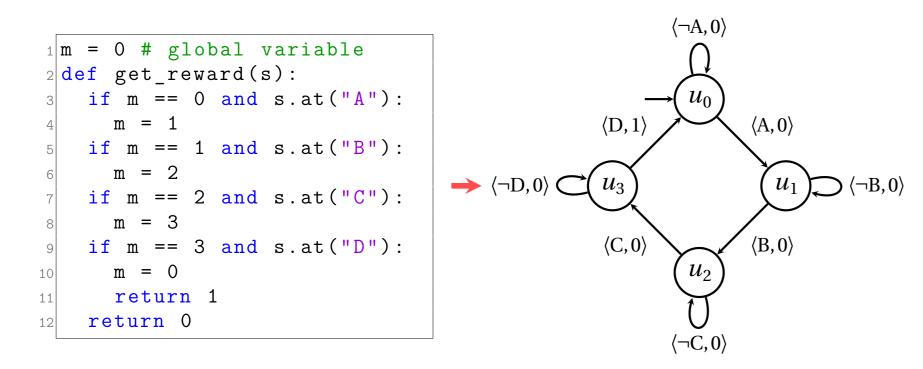
Continuous Domains

Deep QRM uses DDQN with prioritized experience replay.





and human-understandable, realized via low-level event, property, or feature detectors. E.g., $\mathscr{P} = \{ \texttt{L}, \texttt{M}, o, \texttt{K}, A, B, C, D \}$.



Reward Machines (RM) are Mealy machines where the input alphabet is the set of possible labels and the output alphabet is a set of reward functions. They consist of the following elements:

• A finite set of states U.

- An initial state $u_0 \in U$.
- A set of transitions, each labelled by:
 - a logical condition defined over the vocabulary
 - and a reward function.

Idea: Give the RM-specified reward function to RL algorithms and tailor learning to the function structure.

Cross-product baseline

RMs can produce non-Markovian rewards, but we can add the RM state to the agent's state representation and use q-learning:

- Observe state $\langle s, u \rangle$ and execute action $a \sim \pi(a | \langle s, u \rangle)$.
- Observe next state $\langle s', u' \rangle$ and the reward *r*.
- Improve policy π using experience $\langle \langle s, u \rangle, a, r, \langle s', u' \rangle \rangle$. • $\langle s, u \rangle \leftarrow \langle s', u' \rangle$.

(1) QRM (Q-learning for Reward Machines)

- Observe state $\langle s, u \rangle$ and execute action $a \sim \pi(a | \langle s, u \rangle)$.
- Observe next state $\langle s', u' \rangle$ and the reward *r*.
- Improve policy π using $\langle \langle s, u_i \rangle, a, r_{ij}, \langle s', u_j \rangle \rangle$ for all $u_i \in U$. • $\langle s, u \rangle \leftarrow \langle s', u' \rangle$.

See also

Code: bitbucket.org/RToroIcarte/qrm

References

- [1] Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A. McIlraith. Non-Markovian rewards expressed in LTL: guiding search via reward shaping. In SOCS, pages 159–160, 2017. A longer version appeared at the First Workshop on Goal Specifications for Reinforcement Learning, colocated with ICML/IJCAI/AAMAS (2018).
- [2] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith. Teaching multiple tasks to an RL agent using LTL. In AAMAS, pages 452–461, 2018.
- [3] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith. Using reward machines for high-level task specification and decomposition in reinforcement learning. In *ICML*, pages 2112–2121, 2018.